OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 22 — Nov. 15, 2008
  • pp: 2572–2574

Polarization singularity anisotropy: determining monstardom

Mark R. Dennis  »View Author Affiliations

Optics Letters, Vol. 33, Issue 22, pp. 2572-2574 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



C points, that is, isolated points of circular polarization in transverse fields of varying polarization, are classified morphologically into three distinct types known as lemons, stars, and monstars. These morphologies are interpreted here according to two natural parameters associated with the singularity, namely, the anisotropy of the C point and the polarization azimuth on the anisotropy axis. In addition to providing insight into singularity morphology, this observation applies to the densities of the various morphologies in isotropic random polarization speckle fields.

© 2008 Optical Society of America

OCIS Codes
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Physical Optics

Original Manuscript: August 20, 2008
Revised Manuscript: September 29, 2008
Manuscript Accepted: September 30, 2008
Published: November 5, 2008

Mark R. Dennis, "Polarization singularity anisotropy: determining monstardom," Opt. Lett. 33, 2572-2574 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye and M. V. Berry, Proc. R. Soc. London Ser. A 336, 165 (1974). [CrossRef]
  2. J. F. Nye, Natural Focusing and Fine Structure of Light (IoPP, 1999).
  3. J. F. Nye, Proc. R. Soc. London Ser. A 389, 279 (1983). [CrossRef]
  4. M. V. Berry and J. H. Hannay, J. Phys. A 10, 1809 (1977). [CrossRef]
  5. G. Darboux, Leçons sur la Théorie Générale des Surfaces Note VII (Gauthier-Villars, 1896), Vol. 4.
  6. I. R. Porteous, Geometric Differentiation (Cambridge U. Press, 2001).
  7. M. R. Dennis, Opt. Commun. 213, 201 (2002). [CrossRef]
  8. H. Poincaré, Théorie Mathématique de la Lumière (Éditions Jacques Gabay, 1995), Vol. 2.
  9. A. Konukhov and L. Melnikov, J. Opt. B 3, S139 (2001). [CrossRef]
  10. I. Freund, M. Soskin, and A. Mokhun, Opt. Commun. 208, 223 (2002). [CrossRef]
  11. M. V. Berry, M. R. Dennis, and R. L. Lee, Jr., New J. Phys. 6, 162 (2004). [CrossRef]
  12. M. V. Berry and M. R. Dennis, Proc. R. Soc. London Ser. A 459, 1261 (2003). [CrossRef]
  13. M. R. Dennis, J. Opt. A 6, S217 (2004). [CrossRef]
  14. Y. A. Egorov, T. A. Fadeyeva, and A. V. Volyar, J. Opt. A 6, S217 (2004). [CrossRef]
  15. F. S. Roux, J. Opt. Soc. Am. B 21, 664 (2004). [CrossRef]
  16. F. Flossmann, K. O'Holleran, M. R. Dennis, and M. J. Padgett, Phys. Rev. Lett. 100, 203902 (2008). [CrossRef] [PubMed]
  17. V. G. Denisenko, R. I. Egorov, and M. S. Soskin, JETP Lett. 31, 17 (2004). [CrossRef]
  18. M. S. Soskin, V. G. Denisenko, and R. I. Egorov, J. Opt. A 6, S281 (2004). [CrossRef]
  19. V. Vasil'ev and M. Soskin, Opt. Commun. 281, 5527 (2008). [CrossRef]
  20. M. V. Berry and M. R. Dennis, Proc. R. Soc. London Ser. A 456, 2059 (2000). [CrossRef]
  21. D. R. Nelson, Defects and Geometry in Condensed Matter Physics (Cambridge U. Press, 2002).
  22. R. I. Egorov, M. S. Soskin, and I. Freund, Opt. Lett. 31, 2048 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited