OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 23 — Dec. 1, 2008
  • pp: 2791–2793

Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalate

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu  »View Author Affiliations

Optics Letters, Vol. 33, Issue 23, pp. 2791-2793 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Simultaneous generation of noncollinear red, green, and blue light from a single hexagonally poled lithium tantalate is reported. It results from the frequency self-doubling optical parametric amplification process, a process of second-order harmonic generation cascaded optical parametric amplification in a single-pass setup. The temperature and spectrum detuning characters of each cascaded quasi-phase-matching process are studied. This unique red–green–blue light source has potential applications in laser display and other laser industries.

© 2008 Optical Society of America

OCIS Codes
(140.7300) Lasers and laser optics : Visible lasers
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

Original Manuscript: September 2, 2008
Revised Manuscript: October 13, 2008
Manuscript Accepted: October 15, 2008
Published: November 21, 2008

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, "Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalate," Opt. Lett. 33, 2791-2793 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Andrews, H. Rabin, and C. L. Tang, Phys. Rev. Lett. 25, 605 (1970). [CrossRef]
  2. J. M. Yarborough and E. O. Ammann, Appl. Phys. Lett. 18, 145 (1971). [CrossRef]
  3. V. Petrov and F. Noack, Opt. Lett. 20, 2171 (1995). [CrossRef] [PubMed]
  4. T. Kartaloğlu, K. G. Köprülü, and O. Aytür, Opt. Lett. 22, 280 (1997). [CrossRef]
  5. K. G. Köprülü, T. Kartaloğlu, Y. Dikmelik, and O. Aytür, J. Opt. Soc. Am. B 16, 1546 (1999). [CrossRef]
  6. E. C. Cheung, K. Koch, and G. T. Moore, Opt. Lett. 19, 1967 (1994). [CrossRef] [PubMed]
  7. R. J. Ellingson and C. L. Tang, Opt. Lett. 18, 438 (1993). [CrossRef] [PubMed]
  8. G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, IEEE J. Quantum Electron. 34, 803 (1998). [CrossRef]
  9. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, Opt. Lett. 22, 1211 (1997). [CrossRef] [PubMed]
  10. C. McGowan, D. T. Reid, Z. E. Penman, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, J. Opt. Soc. Am. B 15, 694 (1998). [CrossRef]
  11. G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, Appl. Phys. Lett. 78, 3006 (2001). [CrossRef]
  12. X. P. Zhang, J. Hebling, J. Kuhl, W. W. Rühle, and H. Giessen, Opt. Lett. 26, 2005 (2001). [CrossRef]
  13. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, Opt. Lett. 23, 207 (1998). [CrossRef]
  14. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997). [CrossRef]
  15. Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, Appl. Phys. Lett. 78, 577 (2001). [CrossRef]
  16. K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 023903 (2002). [CrossRef]
  17. Y. Zhang and B. Y. Gu, Opt. Commun. 192, 417 (2001). [CrossRef]
  18. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992). [CrossRef]
  19. Z. D. Gao, S. Y. Tu, S. N. Zhu, and A. H. Kung, Appl. Phys. Lett. 89, 181101 (2006). [CrossRef]
  20. X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, Opt. Lett. 33, 408 (2008). [CrossRef] [PubMed]
  21. N. G. R. Broderick, R. T. Bratfalean, T. M. Monro, D. J. Richardson, and C. M. de Sterke, J. Opt. Soc. Am. B 19, 2263 (2002). [CrossRef]
  22. N. Fujioka, S. Ashihara, H. Ono, T. Shimura, and K. Kuroda, J. Opt. Soc. Am. B 24, 2394 (2007). [CrossRef]
  23. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995). [CrossRef]
  24. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, Phys. Rev. Lett. 93, 133904 (2004). [CrossRef] [PubMed]
  25. V. Berger, Phys. Rev. Lett. 81, 4136 (1998). [CrossRef]
  26. N. G. R. Broderick, H. L. Offerhaus, G. W. Ross, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000). [CrossRef] [PubMed]
  27. http://www.nd.edu/~sboker/ColorVision2/CIEColorSpace2.gif.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited