OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 23 — Dec. 1, 2008
  • pp: 2827–2829

Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane

J. Brian Leen, Paul Hansen, Yao-Te Cheng, and Lambertus Hesselink  »View Author Affiliations

Optics Letters, Vol. 33, Issue 23, pp. 2827-2829 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an improved fabrication method for C-shaped near-field apertures resonant in the near-IR regime. The apertures are created in a metal layer on a silicon nitride membrane using a focused ion beam and a through membrane milling technique that avoids two problems with fabricating very small apertures: gallium contamination and edge rounding. Finite-difference time-domain simulations predict a 63 × more intense near field with a 2.2 × smaller spot versus conventionally milled apertures. We verify the position of the simulated resonance peaks with experimental far-field transmission measurements where we also find an increase of 8.8 × in intensity. Our method has applications to many other plasmonic devices including bow-tie and fractal apertures, periodic arrays, and gratings.

© 2008 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: September 15, 2008
Manuscript Accepted: October 2, 2008
Published: November 24, 2008

J. Brian Leen, Paul Hansen, Yao-Te Cheng, and Lambertus Hesselink, "Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane," Opt. Lett. 33, 2827-2829 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, Science 311, 189 (2006). [CrossRef] [PubMed]
  2. K. Sendur, W. Challener, and C. Peng, J. Appl. Phys. 96, 2743 (2004). [CrossRef]
  3. L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, Opt. Express 14, 9902 (2006). [CrossRef] [PubMed]
  4. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003). [CrossRef] [PubMed]
  5. X. Shi and L. Hesselink, J. Opt. Soc. Am. B 21, 1305 (2004). [CrossRef]
  6. Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. Wang, and X. Luo, Appl. Phys. B 86, 461 (2007). [CrossRef]
  7. C. Lehrer, L. Frey, S. Petersen, M. Mizutani, M. Takai, and H. Ryssel, in IEEE Conference on Ion Implantation Technology (IEEE, 2000), pp. 695-698.
  8. A. Stanishevsky, B. Nagaraj, J. Melngailis, R. Ramesh, L. Khriachtchev, and E. McDaniel, J. Appl. Phys. 92, 3275 (2002). [CrossRef]
  9. D. Pickard, Ph.D. dissertation (Stanford University, 2006).
  10. K. J. Kim, B. N. Harmon, L.-Y. Chen, and D. W. Lynch, Phys. Rev. B 42, 8813 (1990). [CrossRef]
  11. J. A. Matteo, Ph.D. dissertation (Stanford University, 2005).
  12. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004). [CrossRef]
  13. A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000), pp. 349-366.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited