OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 33, Iss. 3 — Feb. 1, 2008
  • pp: 228–230

Cases where the linear canonical transform of a signal has compact support or is band-limited

John J. Healy and John T. Sheridan  »View Author Affiliations


Optics Letters, Vol. 33, Issue 3, pp. 228-230 (2008)
http://dx.doi.org/10.1364/OL.33.000228


View Full Text Article

Enhanced HTML    Acrobat PDF (77 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A signal may have compact support, be band-limited (i.e., its Fourier transform has compact support), or neither (“unbounded”). We determine conditions for the linear canonical transform of a signal having these properties. We examine the significance of these conditions for special cases of the linear canonical transform and consider the physical significance of our results.

© 2008 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(110.1220) Imaging systems : Apertures
(200.1130) Optics in computing : Algebraic optical processing
(070.2465) Fourier optics and signal processing : Finite analogs of Fourier transforms

ToC Category:
Imaging Systems

History
Original Manuscript: August 14, 2007
Revised Manuscript: November 2, 2007
Manuscript Accepted: December 1, 2007
Published: January 25, 2008

Citation
John J. Healy and John T. Sheridan, "Cases where the linear canonical transform of a signal has compact support or is band-limited," Opt. Lett. 33, 228-230 (2008)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-3-228


Sort:  Year  |  Journal  |  Reset  

References

  1. H. Baher, Analog & Digital Signal Processing (Wiley, 1990), p. 121.
  2. A. Papoulis, The Fourier Integral and its Applications (McGraw-Hill, 1962), p. 215.
  3. R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain (American Mathematical Society, 1934), p. 12.
  4. D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, Opt. Eng. 45, 088201 (2006). [CrossRef]
  5. B. M. Hennelly and J. T. Sheridan, J. Opt. Soc. Am. A 22, 917 (2005). [CrossRef]
  6. M. J. Bastiaans and K. B. Wolf, in Seventh International Symposium on Signal Processing and Its Applications (IEEE, 2003), Vol. 1, pp. 589-592. [CrossRef]
  7. B. Barshan, M. Alper Kutay, and H. M. Ozaktas, Opt. Commun. 135, 32 (1997). [CrossRef]
  8. S.-C. Pei and J.-J. Ding, J. Opt. Soc. Am. A 17, 2355 (2000). [CrossRef]
  9. K. K. Sharma and S. D. Joshi, Opt. Commun. 265, 454 (2006). [CrossRef]
  10. A. Stern, Signal Processing 86, 1421 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited