OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 33, Iss. 4 — Feb. 15, 2008
  • pp: 411–413

Coherent hard x rays from attosecond pulse train-assisted harmonic generation

Michael Klaiber, Karen Z. Hatsagortsyan, Carsten Müller, and Christoph H. Keitel  »View Author Affiliations


Optics Letters, Vol. 33, Issue 4, pp. 411-413 (2008)
http://dx.doi.org/10.1364/OL.33.000411


View Full Text Article

Enhanced HTML    Acrobat PDF (245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-order harmonic generation from atomic systems is considered in the crossed fields of a relativistically strong infrared laser and a weak attosecond pulse train of soft x rays. Due to one-photon ionization by the x-ray pulse, the ionized electron obtains a starting momentum that compensates the relativistic drift, which is induced by the laser magnetic field, and allows the electron to efficiently emit harmonic radiation upon recombination with the atomic core in the relativistic regime. This way, short pulses of coherent hard x rays of up to 40 keV energy can be generated.

© 2008 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(320.7120) Ultrafast optics : Ultrafast phenomena
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Ultrafast Optics

History
Original Manuscript: November 20, 2007
Manuscript Accepted: December 18, 2007
Published: February 14, 2008

Citation
Michael Klaiber, Karen Z. Hatsagortsyan, Carsten Müller, and Christoph H. Keitel, "Coherent hard x rays from attosecond pulse train-assisted harmonic generation," Opt. Lett. 33, 411-413 (2008)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-4-411


Sort:  Year  |  Journal  |  Reset  

References

  1. P. Agostini and L. F. DiMauro, Rep. Prog. Phys. 67, 813 (2004). [CrossRef]
  2. J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, Nature 433, 596 (2005). [CrossRef] [PubMed]
  3. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, Science 314, 443 (2006). [CrossRef] [PubMed]
  4. Y. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rep. 427, 42 (2006). [CrossRef]
  5. V. D. Taranukhin, Laser Phys. 10, 330 (2000).
  6. C. H. Keitel and S. X. Hu, Appl. Phys. Lett. 80, 541 (2002). [CrossRef]
  7. C. C. Chirilǎ, N. J. Kylstra, R. M. Potvliege, and C. J. Joachain, Phys. Rev. A 66, 063411 (2002). [CrossRef]
  8. C. C. Chirilǎ, N. J. Kylstra, R. M. Potvliege, and C. J. Joachain, Phys. Rev. Lett. 93, 243603 (2004). [CrossRef]
  9. N. Milosevic, P. B. Corkum, and T. Brabec, Phys. Rev. Lett. 92, 013002 (2004). [CrossRef] [PubMed]
  10. G. Mocken and C. H. Keitel, J. Phys. B 37, L275 (2004). [CrossRef]
  11. B. Henrich, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rev. Lett. 93, 013601 (2004). [CrossRef]
  12. Q. Lin, S. Li, and W. Becker, Opt. Lett. 31, 2163 (2006). [CrossRef] [PubMed]
  13. R. Fischer, M. Lein, and C. H. Keitel, Phys. Rev. Lett. 97, 143901 (2006). [CrossRef] [PubMed]
  14. M. Verschl and C. H. Keitel, Europhys. Lett. 77, 64004 (2007). [CrossRef]
  15. M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rev. A 75, 063413 (2007). [CrossRef]
  16. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, Nature 414, 509 (2001). [CrossRef] [PubMed]
  17. A. Bandrauk and N. H. Shon, Phys. Rev. A 66, 031401 (2002). [CrossRef]
  18. K. J. Schafer, M. B. Gaarde, A. Heinrich, J. Biegert, and U. Keller, Phys. Rev. Lett. 92, 023003 (2004). [CrossRef] [PubMed]
  19. C. Figueira de Morisson Faria, P. Salieres, P. Villain, and M. Lewenstein, Phys. Rev. A 74, 053416 (2006). [CrossRef]
  20. K. Ishikawa, Phys. Rev. Lett. 91, 043002 (2003). [CrossRef] [PubMed]
  21. Strong APTs of up to 1 keV photon energy can be produced, e.g., via laser pulse interaction with overdense plasmas, see G. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and F. Krausz, New J. Phys. 8, 19 (2006). [CrossRef]
  22. D. B. Milosevic, S. Hu, and W. Becker, Phys. Rev. A 63, 011403 (2001).
  23. We do not include the Gaussian envelope of the APT in the phase during the saddle point integration, which is justified, as the energy spread of the XUV photons is negligible here: 1/τ≪Δepsi, with the typical energy difference Δepsi~2a.u..

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited