OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 33, Iss. 5 — Mar. 1, 2008
  • pp: 428–430

Surface-relief gratings with high spatial frequency fabricated using direct glass imprinting process

T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii  »View Author Affiliations


Optics Letters, Vol. 33, Issue 5, pp. 428-430 (2008)
http://dx.doi.org/10.1364/OL.33.000428


View Full Text Article

Enhanced HTML    Acrobat PDF (329 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Surface-relief gratings with high spatial frequencies were first fabricated using a direct imprinting process with a glassy carbon mold at the softening temperature of phosphate glass. A grating with maximum height of 730 nm and 500 nm period was formed on the glass surface by the pressing at the softening temperature of glass under constant pressure of 0.4 kN cm 2 . Phase retardation of 0.1 λ was observed between TE-polarized and TM-polarized light at 600 nm wavelength.

© 2008 Optical Society of America

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(310.1210) Thin films : Antireflection coatings
(310.6628) Thin films : Subwavelength structures, nanostructures
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Optical Devices

History
Original Manuscript: October 10, 2007
Revised Manuscript: January 24, 2008
Manuscript Accepted: January 27, 2008
Published: February 20, 2008

Citation
T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii, "Surface-relief gratings with high spatial frequency fabricated using direct glass imprinting process," Opt. Lett. 33, 428-430 (2008)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-5-428


Sort:  Year  |  Journal  |  Reset  

References

  1. J. Nishii, K. Kintaka, and T. Nakazawa, Appl. Opt. 43, 1327 (2004). [CrossRef] [PubMed]
  2. T. Glaser, S. Schröter, H. Bartelt, H. Fuchs, and E. Kley, Appl. Opt. 41, 3558 (2002). [CrossRef] [PubMed]
  3. S. J. Wilson and M. C. Hutley, Opt. Acta 29, 993 (1982). [CrossRef]
  4. H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, Jpn. J. Appl. Phys., Part 2 40, L747 (2001). [CrossRef]
  5. H. Kikuta, Y. Ohira, and K. Iwata, Appl. Opt. 36, 1566 (1997). [CrossRef] [PubMed]
  6. T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, J. Vac. Sci. Technol. B 23, 2939 (2005). [CrossRef]
  7. Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, and K. Yamamoto, Jpn. J. Appl. Phys., Part 1 42, 3863 (2003). [CrossRef]
  8. A. Y. Yi and A. Jain, J. Am. Ceram. Soc. 88, 579 (2005). [CrossRef]
  9. G. C. Firestone, A. Jain, and A. Y. Yi, Rev. Sci. Instrum. 76, 63010 (2005). [CrossRef]
  10. A. Y. Yi, Y. Chen, F. Klocke, G. Pongs, A. Demmer, D. Grewell, and A. Benatar, J. Micromech. Microeng. 16, 2000 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited