OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 33, Iss. 5 — Mar. 1, 2008
  • pp: 461–463

Chemosorption-related shift of a photonic bandgap in photoconductive ZnO inverse opal

Worawut Khunsin, Sergei G. Romanov, Michael Scharrer, Larry K. Aagesen, Robert P. H. Chang, and Clivia M. Sotomayor Torres  »View Author Affiliations


Optics Letters, Vol. 33, Issue 5, pp. 461-463 (2008)
http://dx.doi.org/10.1364/OL.33.000461


View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A change of up to 40% of the relative transmission at the photonic bandgap edge has been observed in photoconductive inverted ZnO opals under ultraviolet laser irradiation. This effect has been related to the irradiation-stimulated change of the refraction index of the photonic crystal. The desorption (chemosorption) of oxygen molecules on the surface of the ZnO backbone leading to destruction (formation) of a depletion layer at the ZnO surface has been suggested as the mechanism responsible for the slow variation of polarizability of the inverted ZnO opal.

© 2008 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: January 3, 2008
Manuscript Accepted: January 26, 2008
Published: February 25, 2008

Citation
Worawut Khunsin, Sergei G. Romanov, Michael Scharrer, Larry K. Aagesen, Robert P. H. Chang, and Clivia M. Sotomayor Torres, "Chemosorption-related shift of a photonic bandgap in photoconductive ZnO inverse opal," Opt. Lett. 33, 461-463 (2008)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-5-461


Sort:  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  2. P. M. Johnson, A. F. Koenderink, and W. L. Vos, Phys. Rev. B 66, 081102 (2002). [CrossRef]
  3. S. Y. Yang, P. H. Yang, C. D. Liao, J. J. Chieh, Y. P. Chen, H. E. Horng, C.-Y. Hong, and H. C. Yang, Appl. Phys. Lett. 89, 231108 (2006). [CrossRef]
  4. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999). [CrossRef]
  5. T. Suntala, Atomic Layer Epitaxy (Blackie Academic and Professional, 1990). [CrossRef]
  6. M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, Appl. Phys. Lett. 86, 151113 (2005). [CrossRef]
  7. M. T. Tinker and J.-B. Lee, Opt. Express 13, 7174 (2005). [CrossRef] [PubMed]
  8. E. Mollwo, in Proceedings of the Photoconductivity Conference, R.G.Breckenridge, ed. (Wiley, 1954), pp. 509-528.
  9. D. H. Zhang, J. Phys. D 28, 1273 (1995). [CrossRef]
  10. W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, Appl. Phys. Lett. 85, 3666 (2004). [CrossRef]
  11. Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, Jpn. J. Appl. Phys., Part 1 33, 6611 (1994). [CrossRef]
  12. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. (Weinheim, Ger.) 14, 158 (2002). [CrossRef]
  13. P. Sharma, K. Sreenivas, and K. V. Rao, J. Appl. Phys. 93, 3963 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited