OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 6 — Mar. 15, 2008
  • pp: 539–541

Femto-Newton light force measurement at the thermal noise limit

F. Mueller, S. Heugel, and L. J. Wang  »View Author Affiliations

Optics Letters, Vol. 33, Issue 6, pp. 539-541 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (235 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The measurement of very small light forces has wide applications in many fields of physics. A common measurement method for small force detection is the determination of changes in the dynamic behavior of mechanical oscillators, either in amplitude or in frequency. The detection of slowly varying forces mostly requires long period oscillators, such as a torsion pendulum. We demonstrate the application of a macroscopic, low-noise, torsion balance oscillator for the detection of radiation pressure forces at the femto-Newton level. The system is “precooled” (removing excess seimic noise) to be only thermal noise limited. The demonstrated force sensitivity reaches the thermal limit.

© 2008 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: December 12, 2007
Revised Manuscript: February 4, 2008
Manuscript Accepted: February 5, 2008
Published: March 5, 2008

F. Mueller, S. Heugel, and L. J. Wang, "Femto-Newton light force measurement at the thermal noise limit," Opt. Lett. 33, 539-541 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. A. Rohrbach, Opt. Express 13, 9695 (2005). [CrossRef] [PubMed]
  2. V. B. Braginsky and A. B. Manukin, Measurement of Weak Forces in Physics Experiments (U. Chicago Press, 1977).
  3. A. B. Matsko, E. A. Zubova, and S. P. Vyatchanin, Opt. Commun. 131, 107 (1996). [CrossRef]
  4. C. H. Metzger and K. Karrai, Nature 432, 1002 (2004). [CrossRef] [PubMed]
  5. D. Kleckner and D. Bouwmeester, Nature 444, 75 (2006). [CrossRef] [PubMed]
  6. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, Phys. Rev. Lett. 99, 160801 (2007). [CrossRef] [PubMed]
  7. F. Mueller, S. Heugel, and L. J. Wang, Appl. Phys. Lett. 92, 044101 (2008). [CrossRef]
  8. L. Haiberger, M. Weingran, and S. Schiller, Rev. Sci. Instrum. 78, 025101 (2007). [CrossRef] [PubMed]
  9. P. G. Roll, R. Krotkov, and R. H. Dicke, Ann. Phys. (N.Y.) 26, 442 (1964). [CrossRef]
  10. H. Nyquist, Phys. Rev. 32, 110 (1928). [CrossRef]
  11. R. C. Ritter and G. T. Gillies, Phys. Rev. A 31, 995 (1985). [CrossRef] [PubMed]
  12. P. R. Saulson, Phys. Rev. D 42, 2437 (1990). [CrossRef]
  13. Y. T. Chen and A. Cook, Class. Quantum Grav. 7, 1225 (1990). [CrossRef]
  14. C. W. McCombie, Rep. Prog. Phys. 16, 266 (1953). [CrossRef]
  15. P. Lorrain, Opt. Lasers Eng. 15, 197 (1991). [CrossRef]
  16. D. Rugar and P. Gruetter, Phys. Rev. Lett. 67, 699 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited