OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 33, Iss. 6 — Mar. 15, 2008
  • pp: 539–541

Femto-Newton light force measurement at the thermal noise limit

F. Mueller, S. Heugel, and L. J. Wang  »View Author Affiliations


Optics Letters, Vol. 33, Issue 6, pp. 539-541 (2008)
http://dx.doi.org/10.1364/OL.33.000539


View Full Text Article

Enhanced HTML    Acrobat PDF (235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The measurement of very small light forces has wide applications in many fields of physics. A common measurement method for small force detection is the determination of changes in the dynamic behavior of mechanical oscillators, either in amplitude or in frequency. The detection of slowly varying forces mostly requires long period oscillators, such as a torsion pendulum. We demonstrate the application of a macroscopic, low-noise, torsion balance oscillator for the detection of radiation pressure forces at the femto-Newton level. The system is “precooled” (removing excess seimic noise) to be only thermal noise limited. The demonstrated force sensitivity reaches the thermal limit.

© 2008 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 12, 2007
Revised Manuscript: February 4, 2008
Manuscript Accepted: February 5, 2008
Published: March 5, 2008

Citation
F. Mueller, S. Heugel, and L. J. Wang, "Femto-Newton light force measurement at the thermal noise limit," Opt. Lett. 33, 539-541 (2008)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-6-539

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited