OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 6 — Mar. 15, 2008
  • pp: 572–574

Generalized wavefront phase for non-Kolmogorov turbulence

Darío G. Pérez and Luciano Zunino  »View Author Affiliations

Optics Letters, Vol. 33, Issue 6, pp. 572-574 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (79 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce the Lévy fractional Brownian field family to model the turbulent wavefront phase. This generalized model allows us to overcome the limitations found in a previous approach [Perez et al., J. Opt. Soc. Am. A 21, 1962 (2004)]. More precisely, our new model provides stationary phase increments over the full inertial range. Thus it successfully extends classical results to non-Kolmogorov turbulence without any approximation.

© 2008 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.7060) Atmospheric and oceanic optics : Turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: November 2, 2007
Revised Manuscript: February 7, 2008
Manuscript Accepted: February 10, 2008
Published: March 11, 2008

Darío G. Pérez and Luciano Zunino, "Generalized wavefront phase for non-Kolmogorov turbulence," Opt. Lett. 33, 572-574 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. R. G. Buser, J. Opt. Soc. Am. 61, 488 (1971). [CrossRef]
  2. M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, and C. H. Townes, Astrophys. J. 392, 357 (1992). [CrossRef]
  3. D. Dayton, B. Pierson, B. Spielbusch, and J. Gonglewski, Opt. Lett. 17, 1737 (1992). [CrossRef] [PubMed]
  4. D. S. Acton, Appl. Opt. 34, 4526 (1995). [CrossRef] [PubMed]
  5. T. W. Nicholls, G. D. Boreman, and J. C. Dainty, Opt. Lett. 20, 2460 (1995). [CrossRef] [PubMed]
  6. G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Stochastic Modeling (Chapman & Hall/CRC1994).
  7. C. Schwartz, G. Baum, and E. N. Ribak, J. Opt. Soc. Am. A 11, 444 (1994). [CrossRef]
  8. E. N. Ribak, E. Gershnik, and M. Cheselka, Opt. Lett. 21, 435 (1996). [CrossRef] [PubMed]
  9. A. Belmonte, A. Comeron, J. A. Rubio, J. Bara, and E. Fernandez, Appl. Opt. 36, 8632 (1997). [CrossRef]
  10. C. Dessenne, P. Y. Madec, and G. Rousset, Appl. Opt. 37, 4623 (1998). [CrossRef]
  11. D. R. McGaughey and G. J. M. Aitken, J. Opt. Soc. Am. A 14, 1967 (1997). [CrossRef]
  12. R. A. Johnston and R. G. Lane, Appl. Opt. 39, 4761 (2000). [CrossRef]
  13. D. G. Pérez, L. Zunino, and M. Garavaglia, J. Opt. Soc. Am. A 21, 1962 (2004). [CrossRef]
  14. R. J. Elliott and J. van der Hoek, Math. Finance 13, 301 (2003). [CrossRef]
  15. E. Herbin, Rocky Mountain J. Math. 36, 1249 (2006). [CrossRef]
  16. D. L. Fried, J. Opt. Soc. Am. 56, 1372 (1966). [CrossRef]
  17. V. I. Tatarskĭ, Wave Propagation in a Turbulent Atmosphere (Nauka, 1967). [In Russian; English translation: The Effect of the Turbulent Atmosphere on Wave Propagation (NTIS, 1971)].
  18. M. Sarazin and F. Roddier, Astron. Astrophys. 227, 294 (1990).
  19. S. S. Olivier, C. E. Max, D. T. Gavel, and J. M. Brase, Astrophys. J. 407, 428 (1993). [CrossRef]
  20. J.-M. Bardet and P. Bertrand, J. Time Ser. Anal. 28, 1 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited