OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 7 — Apr. 1, 2008
  • pp: 681–683

Tighter focusing with a parabolic mirror

J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner  »View Author Affiliations

Optics Letters, Vol. 33, Issue 7, pp. 681-683 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (253 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate experimentally and theoretically that a parabolic mirror (PM) with a high numerical aperture (NA) of 1 focuses a radially polarized laser mode to the smallest diffraction-limited spot at a fixed NA and wavelength, having an area of 0.134 λ 2 . The measurements were performed with a confocal microscope, using the PM as a focusing and collecting element. The results stand in accordance with the theoretical calculations presented by Davidson and Bokor [Opt. Lett. 29, 1318 (2004)] , who predicted a reduction in the total focal spot size of 43% as compared with an aplanatic lens.

© 2008 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.1790) Microscopy : Confocal microscopy
(180.5810) Microscopy : Scanning microscopy
(350.5730) Other areas of optics : Resolution

ToC Category:

Original Manuscript: December 11, 2007
Revised Manuscript: February 8, 2008
Manuscript Accepted: February 8, 2008
Published: March 27, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, "Tighter focusing with a parabolic mirror," Opt. Lett. 33, 681-683 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, Opt. Commun. 179, 1 (2000). [CrossRef]
  2. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 4 (2003). [CrossRef]
  3. The spot size is defined as the area that is encircled by the contour line at half the maximum value of the intensity.
  4. N. Davidson and N. Bokor, Opt. Lett. 29, 1318 (2004). [CrossRef] [PubMed]
  5. A. Lieb and A. J. Meixner, Opt. Express 8, 458 (2001). [CrossRef] [PubMed]
  6. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  7. Radial beam profile at the mirror aperture, I(r)=I0exp(r/w0)2I1(2r/w0) with fitting parameter 2r/w0=1.2728.
  8. C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, J. Microsc. 210, 203 (2003). [CrossRef] [PubMed]
  9. B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959). [CrossRef]
  10. F. Stade, A. Heeren, M. Fleischer, and D. Kern, Microelectron. Eng. 84, 1589 (2007). [CrossRef]
  11. M. R. Beversluis, A. Bouhelier, and L. Novotny, Phys. Rev. B 68, 115433 (2003). [CrossRef]
  12. A. Bouhelier, M. R. Beversluis, and L. Novotny, Appl. Phys. Lett. 82, 4596 (2003). [CrossRef]
  13. N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004). [CrossRef]
  14. M.Born and E.Wolf, eds., Principles of Optics, 7th. ed. (Cambridge U. Press, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited