OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 33, Iss. 9 — May. 1, 2008
  • pp: 1017–1019

Approach to all-optical bipolar direct-sequence ultrawideband coding

Qing Wang and Jianping Yao  »View Author Affiliations

Optics Letters, Vol. 33, Issue 9, pp. 1017-1019 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approach to all-optical bipolar direct-sequence ultrawideband (UWB) encoding for multiple access communications is proposed and demonstrated. The bipolar coding is performed based on electro-optic phase modulation and phase modulation to intensity modulation (PM-IM) conversion in a fiber Bragg grating (FBG) array that serves as a multichannel frequency discriminator. The chip number and the chip period of the code are determined by the number of FBGs and their physical separation. By locating the optical carriers that carry a Gaussian pulse at the left or right slopes of the FBG reflection spectra, bipolar direct-sequence UWB codes are generated. A bipolar UWB coding system with a code length of 4 is experimentally demonstrated.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(070.6020) Fourier optics and signal processing : Continuous optical signal processing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 28, 2008
Revised Manuscript: March 18, 2008
Manuscript Accepted: March 31, 2008
Published: April 30, 2008

Qing Wang and Jianping Yao, "Approach to all-optical bipolar direct-sequence ultrawideband coding," Opt. Lett. 33, 1017-1019 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Porcine, P. Research, and W. Hirt, IEEE Wireless Commun. Mag. 41, 66 (2003).
  2. J. S. Lee, C. Nguyen, and T. Scullion, IEEE Trans. Microwave Theory Tech. 49, 1126 (2001). [CrossRef]
  3. Y. Jeong, S. Jung, and J. Liu, in IEEE International Symposium on Circuits and Systems (ISCAS 2004), (IEEE, 2004), paper VI-129.
  4. W. P. Lin and J. Y. Chen, IEEE Photon. Technol. Lett. 17, 2418 (2005). [CrossRef]
  5. I. S. Lin, J. D. McKinney, and A. M. Weiner, Biotechnol. Bioprocess Eng. 15, 226 (2005).
  6. H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, Electron. Lett. 43, 542 (2007). [CrossRef]
  7. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, Opt. Lett. 32, 1223 (2007). [CrossRef] [PubMed]
  8. Q. Wang, F. Zeng, S. Blais, and J. P. Yao, Opt. Lett. 31, 3083 (2006). [CrossRef] [PubMed]
  9. Q. Wang and J. P. Yao, Electron. Lett. 42, 1304 (2006). [CrossRef]
  10. F. Zeng and J. P. Yao, IEEE Photon. Technol. Lett. 18, 823 (2006). [CrossRef]
  11. F. Zeng and J. P. Yao, IEEE Photon. Technol. Lett. 18, 2062 (2006). [CrossRef]
  12. Y. L. Guennec, M. Lourdiane, B. Cabon, G. Maury, and P. Lombard, in the 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 518-519.
  13. Y. X. Guo, V. H. Pham, M. L. Yee, L. C. Ong, and B. Luo, in 2007 IEEE International Conference on Ultrawideband (IEEE, 2007), pp. 429-431. [CrossRef]
  14. B. Hu and N. C. Beaulieu, IEEE Trans. Commun. 53, 1053 (2005). [CrossRef]
  15. Q. Wang and J. P. Yao, J. Lightwave Technol. 25, 3626 (2007). [CrossRef]
  16. R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread Spectrum Communications (Prentice-Hall, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited