OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 33, Iss. 9 — May. 1, 2008
  • pp: 911–913

Analytic theory of self-similar mode-locking

Brandon G. Bale, J. Nathan Kutz, and Frank Wise  »View Author Affiliations

Optics Letters, Vol. 33, Issue 9, pp. 911-913 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (158 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model is developed to quantify the experimental observations of self-similar parabolic pulses in a mode-locked laser cavity with net-zero dispersion. The averaging procedure used shows the pulse amplitude to be governed by the porous media equation that has the well-known Barenblatt similarity (parabolic) solution, suggesting that it is a viable theoretical description of temporal profiles observed in mode-locked cavities. To the best of our knowledge, this is the first analytic model proposing a mechanism responsible for generating temporal parabolic pulses.

© 2008 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 14, 2008
Revised Manuscript: February 7, 2008
Manuscript Accepted: February 27, 2008
Published: April 22, 2008

Brandon G. Bale, J. Nathan Kutz, and Frank Wise, "Analytic theory of self-similar mode-locking," Opt. Lett. 33, 911-913 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge U. Press, 1996).
  2. C. Menyuk, D. Levi, and P. Winternitz, Phys. Rev. Lett. 69, 3048 (1992). [CrossRef] [PubMed]
  3. M. Soljacic, M. Segev, and C. Menyuk, Phys. Rev. E 61, R1048 (2000). [CrossRef]
  4. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. Quiroga-Teixiero, J. Opt. Soc. Am. B 10, 1185 (1993). [CrossRef]
  5. M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, Phys. Rev. Lett. 84, 6010 (2000). [CrossRef] [PubMed]
  6. C. Finot, G. Millot, C. Billet, and J. Dudley, Opt. Express 11, 1547 (2003). [CrossRef] [PubMed]
  7. G. Chang, H. Winful, A. Galvanaukas, and T. Norris, Phys. Rev. E 72, 016609 (2005). [CrossRef]
  8. F. Ilday, J. Buckley, W. Clark, and F. Wise, Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  9. P. Belanger, Opt. Express 14, 12174 (2006). [CrossRef] [PubMed]
  10. P. Belanger, Opt. Express 15, 11033 (2007). [CrossRef] [PubMed]
  11. H. Haus, IEEE J. Sel. Top. Quant. Electron. 6, 1173 (2000). [CrossRef]
  12. J. N. Kutz, SIAM Rev. 48, 629 (2006). [CrossRef]
  13. J. Bronski and J. N. Kutz, Physica D 108, 315 (1997). [CrossRef]
  14. C. Bender and S. Orzag, Advanced Mathematical Methods for Scientists and Engineers (Springer, 1999).
  15. J. Bronski and J. N. Kutz, J. Opt. Soc. Am. B 14, 903 (1997). [CrossRef]
  16. A. Hasegawa and Y. Kodama, Opt. Lett. 15, 1443 (1990). [CrossRef] [PubMed]
  17. T. Witelski and A. Bernoff, Stud. Appl. Math. 100, 153 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited