OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 33, Iss. 9 — May. 1, 2008
  • pp: 911–913

Analytic theory of self-similar mode-locking

Brandon G. Bale, J. Nathan Kutz, and Frank Wise  »View Author Affiliations


Optics Letters, Vol. 33, Issue 9, pp. 911-913 (2008)
http://dx.doi.org/10.1364/OL.33.000911


View Full Text Article

Enhanced HTML    Acrobat PDF (158 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical model is developed to quantify the experimental observations of self-similar parabolic pulses in a mode-locked laser cavity with net-zero dispersion. The averaging procedure used shows the pulse amplitude to be governed by the porous media equation that has the well-known Barenblatt similarity (parabolic) solution, suggesting that it is a viable theoretical description of temporal profiles observed in mode-locked cavities. To the best of our knowledge, this is the first analytic model proposing a mechanism responsible for generating temporal parabolic pulses.

© 2008 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 14, 2008
Revised Manuscript: February 7, 2008
Manuscript Accepted: February 27, 2008
Published: April 22, 2008

Citation
Brandon G. Bale, J. Nathan Kutz, and Frank Wise, "Analytic theory of self-similar mode-locking," Opt. Lett. 33, 911-913 (2008)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-9-911

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited