OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 33, Iss. 9 — May. 1, 2008
  • pp: 941–943

Spectral filtering for mode locking in the normal dispersive regime

Brandon G. Bale, J. Nathan Kutz, Andy Chong, William H. Renninger, and Frank W. Wise  »View Author Affiliations

Optics Letters, Vol. 33, Issue 9, pp. 941-943 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (214 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model that characterizes the physical process responsible for generating ultrashort, high-energy, mode-locked pulses in a normal-dispersion laser cavity with strong spectral filtering is developed. According to this model, two of the critical physical parameters used to achieve optimal performance are the ratio of the filter bandwidth to the gain bandwidth and the placement of the output coupler in the laser cavity. The spectral filtering plays a crucial role in maintaining a short pulse duration with high energy. This phenomenon is generic to mode locking with normal dispersion.

© 2008 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 26, 2008
Manuscript Accepted: March 13, 2008
Published: April 24, 2008

Brandon G. Bale, J. Nathan Kutz, Andy Chong, William H. Renninger, and Frank W. Wise, "Spectral filtering for mode locking in the normal dispersive regime," Opt. Lett. 33, 941-943 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000). [CrossRef]
  2. I. N. Duling III and M. L. Dennis, Compact Sources of Ultrashort Pulses (Cambridge, 1995). [CrossRef]
  3. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  4. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, Opt. Lett. 29, 1366 (2004). [CrossRef] [PubMed]
  5. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006). [CrossRef] [PubMed]
  6. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, Appl. Phys. B 83, 503 (2006). [CrossRef]
  7. P. A. Belanger, Opt. Express 14, 12174 (2006). [CrossRef] [PubMed]
  8. P. A. Belanger, Opt. Express 15, 11033 (2007). [CrossRef] [PubMed]
  9. J. N. Kutz and B. Sandstede, Opt. Express 16, 636 (2008). [CrossRef] [PubMed]
  10. J. Proctor and J. N. Kutz, J. Math. Comp. Sim. 74, 333 (2007). [CrossRef]
  11. D. Anderson, M. Lisak, and A. Berntson, Pramana, J. Phys. 57, 917 (2001). [CrossRef]
  12. B. Bale and J. N. Kutz, J. Opt. Soc. Am. B , submitted for publication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited