OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 33, Iss. 9 — May. 1, 2008
  • pp: 974–976

Terahertz imaging with compressed sensing and phase retrieval

Wai Lam Chan, Matthew L. Moravec, Richard G. Baraniuk, and Daniel M. Mittleman  »View Author Affiliations

Optics Letters, Vol. 33, Issue 9, pp. 974-976 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (550 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a novel, high-speed pulsed terahertz (THz) Fourier imaging system based on compressed sensing (CS), a new signal processing theory, which allows image reconstruction with fewer samples than traditionally required. Using CS, we successfully reconstruct a 64 × 64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels, which defines the image in the Fourier plane, and observe improved reconstruction quality when we apply phase correction. For our chosen image, only about 12% of the pixels are required for reassembling the image. In combination with phase retrieval, our system has the capability to reconstruct images with only a small subset of Fourier amplitude measurements and thus has potential application in THz imaging with cw sources.

© 2008 Optical Society of America

OCIS Codes
(320.7100) Ultrafast optics : Ultrafast measurements
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Imaging Systems

Original Manuscript: January 28, 2008
Manuscript Accepted: March 5, 2008
Published: April 28, 2008

Wai Lam Chan, Matthew L. Moravec, Richard G. Baraniuk, and Daniel M. Mittleman, "Terahertz imaging with compressed sensing and phase retrieval," Opt. Lett. 33, 974-976 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Chan, J. Deibel, and D. M. Mittleman, Rep. Prog. Phys. 70, 1325 (2007). [CrossRef]
  2. D. Zimdars, Proc. SPIE 5692, 255 (2005). [CrossRef]
  3. S. Wang and X.-C. Zhang, J. Phys. D : Appl. Phys. 37, R1 (2004). [CrossRef]
  4. J. Pearce, H. Choi, and D. M. Mittleman, Opt. Lett. 30, 1653 (2005). [CrossRef] [PubMed]
  5. A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z.-H. Michalopoulou, and D. Zimdars, J. Opt. Soc. Am. A 23, 1168 (2006). [CrossRef]
  6. D. Donoho, IEEE Trans. Inf. Theory 52, 1289 (2006). [CrossRef]
  7. E. Candes, J. Romberg, and T. Tao, IEEE Trans. Inf. Theory 52, 489 (2006). [CrossRef]
  8. D. Takhar, J. Laska, M. Wakin, M. Duarte, D. Baron, S. Sarvotham, K. Kelly, and R. Baraniuk, Proc. SPIE 6065, 606509 (2006). [CrossRef]
  9. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, Opt. Express 15, 14013 (2007). [CrossRef] [PubMed]
  10. J. R. Fienup, Opt. Lett. 3, 27 (1978). [CrossRef] [PubMed]
  11. M. T. Reiten, S. A. Harmon, and R. A. Cheville, J. Opt. Soc. Am. B 20, 2215 (2003). [CrossRef]
  12. E. van den Berg and M. P. Friedlander, SPGL1: a solver for large-scale sparse reconstruction, http://www.cs.ubc.ca/labs/scl/spgl1 (2007).
  13. M. Lustig, D. Donoho, and J. M. Pauly, Magn. Reson. Med. 58, 1182 (2007). [CrossRef] [PubMed]
  14. M. L. Moravec, J. K. Romberg, and R. G. Baraniuk, Proc. SPIE 6701, 670120 (2007). [CrossRef]
  15. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 89, 141125 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited