OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 33, Iss. 9 — May. 1, 2008
  • pp: 995–997

Could cavity solitons exist in bidirectional ring lasers?

L. Columbo, L. Gil, and J. Tredicce  »View Author Affiliations


Optics Letters, Vol. 33, Issue 9, pp. 995-997 (2008)
http://dx.doi.org/10.1364/OL.33.000995


View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show numerically that bright and dark cavity solitons can be obtained in bidirectional class A ring lasers only if the phase invariance of the electromagnetic field is broken. The phase invariance symmetry is responsible for the existence of phase waves, which generate long-range interactions destroying the property of independence among otherwise localized structures. We improved the usual model describing such types of lasers, and we prove that it leads to genuine cavity solitons.

© 2008 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 19, 2007
Revised Manuscript: March 18, 2008
Manuscript Accepted: March 18, 2008
Published: April 30, 2008

Citation
L. Columbo, L. Gil, and J. Tredicce, "Could cavity solitons exist in bidirectional ring lasers?," Opt. Lett. 33, 995-997 (2008)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-9-995


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. http://www.funfacs.org.
  2. B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, Phys. Rev. Lett. 85, 748 (2000). [CrossRef] [PubMed]
  3. U. Bortolozzo and S. Residori, Phys. Rev. Lett. 96, 037801 (2006). [CrossRef] [PubMed]
  4. V. B. Taranenko, I. Ganne, R. Kusselevitz, and C. O. Weiss, Appl. Phys. B 72, 377 (2001).
  5. V. B. Taranenko and C. O. Weiss, Appl. Phys. B 72, 893 (2001).
  6. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl, M. Miller, and R. Jager, Nature 419, 699 (2002). [CrossRef] [PubMed]
  7. Y. Menesguen, S. Barbay, X. Hachair, L. Leroy, I. Sagnes, and R. Kuszelewicz, Phys. Rev. A 74, 023818 (2006). [CrossRef]
  8. X. Hachair, F. Pedaci, E. Caboche, S. Barland, M. Giudici, J. R. Tredicce, F. Prati, G. Tissoni, R. Kheradmand, L. A. Lugiato, I. Protsenko, and M. Brambilla, IEEE J. Sel. Top. Quantum Electron. 12, 339 (2006). [CrossRef]
  9. Y. Tanguy, T. Ackemann, and R. Jäger, Phys. Rev. A 74, 053824 (2006). [CrossRef]
  10. I. Perez-Arjona, J. V. Sanchez-Morcillo, and E. Roldan, Opt. Lett. 32, 3221 (2007). [CrossRef] [PubMed]
  11. The terms “dark” and “bright” solitons may lead to some misunderstandings. In , they refer to a local lack and overload of light, respectively, and are absolutely not related to the usual topological solitons observed in integrable dynamical systems. Also, contrary to the usual “cavity solitons” , the stability of the localized structures in does not result from a balance between bistability and modulational instability. This point is well described in D. Gomila, P. Colet, M. San Miguel, A. J. Scroggie, and G. L. Oppo, IEEE J. Quantum Electron. 39, 238 (2003). [CrossRef]
  12. H. Zeghlache, P. Mandel, N. B. Abraham, L. M. Hoffer, G. L. Lippi, and T. Mello, Phys. Rev. A 37, 470 (1988). [CrossRef] [PubMed]
  13. G. K. Harkness, W. Firth, J. B. Geddes, J. V. Moloney, and E. M. Wright, Phys. Rev. A 50, 4310 (1994). [CrossRef] [PubMed]
  14. W. J. Firth and A. J. Scroggie, Phys. Rev. Lett. 76, 1623 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited