OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 1 — Jan. 1, 2009
  • pp: 25–27

Resonant tunneling effects on cavity-embedded metal film caused by surface-plasmon excitation

Yung-Chiang Lan, Che-Jung Chang, and Peng-Hsiao Lee  »View Author Affiliations

Optics Letters, Vol. 34, Issue 1, pp. 25-27 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate cavity-modulated resonant tunneling through a silver film with periodic grooves on both surfaces. A strip cavity embedded in the film affects tunneling frequencies via a coupling mode and waveguide mode. In the coupling mode, both the resonant tunneling through the gap between the groove and the cavity and the cavity itself form an entire resonant structure. In the waveguide mode, however, the cavity functions as a surface-plasmon waveguide. Hence, tunneling frequencies are close to resonant absorption frequencies of the groove structure and are irrelevant to cavity properties.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.7040) Optics at surfaces : Tunneling

ToC Category:
Optics at Surfaces

Original Manuscript: September 3, 2008
Revised Manuscript: October 16, 2008
Manuscript Accepted: November 9, 2008
Published: December 22, 2008

Yung-Chiang Lan, Che-Jung Chang, and Peng-Hsiao Lee, "Resonant tunneling effects on cavity-embedded metal film caused by surface-plasmon excitation," Opt. Lett. 34, 25-27 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005). [CrossRef]
  4. E. N. Economou, Phys. Rev. 182, 539 (1969). [CrossRef]
  5. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981). [CrossRef]
  6. J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986). [CrossRef]
  7. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, Opt. Lett. 8, 386 (1983). [CrossRef] [PubMed]
  8. F. J. García-Vidal and J. B. Pendry, Phys. Rev. Lett. 77, 1163 (1996). [CrossRef] [PubMed]
  9. M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett. 80, 5667 (1998). [CrossRef]
  10. W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B 59, 12661 (1999). [CrossRef]
  11. W. C. Tan, T. W. Preist, and R. J. Sambles, Phys. Rev. B 62, 11134 (2000). [CrossRef]
  12. W. C. Liu and D. P. Tsai, Phys. Rev. B 65, 155423 (2002). [CrossRef]
  13. Y. C. Lan, Appl. Phys. Lett. 88, 071109 (2006). [CrossRef]
  14. J. D. Jackson, Classical Electrodynamics (Wiley, 1990).
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).
  16. Y. C. Lan, Y. C. Chang, and P. H. Lee, Appl. Phys. Lett. 90, 171114 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited