OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 1 — Jan. 1, 2009
  • pp: 61–63

Extracting hysteresis from nonlinear measurement of wavefront-sensorless adaptive optics system

H. Song, G. Vdovin, R. Fraanje, G. Schitter, and M. Verhaegen  »View Author Affiliations

Optics Letters, Vol. 34, Issue 1, pp. 61-63 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (260 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In many scientific and medical applications wavefront-sensorless adaptive optics (AO) systems are used to correct the wavefront aberration by optimizing a certain target parameter, which is nonlinear with respect to the control signal to the deformable mirror (DM). Hysteresis is the most common nonlinearity of DMs, which can be corrected if the information about the hysteresis behavior is present. We report a general approach to extract hysteresis from the nonlinear behavior of the adaptive optical system, with the illustration of a Foucault knife test, where the voltage–intensity relationship consists of both hysteresis and some memoryless nonlinearity. The hysteresis extracted here can be used for modeling and linearization of the AO system.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Optical Devices

Original Manuscript: September 12, 2008
Revised Manuscript: November 7, 2008
Manuscript Accepted: November 10, 2008
Published: December 24, 2008

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

H. Song, G. Vdovin, R. Fraanje, G. Schitter, and M. Verhaegen, "Extracting hysteresis from nonlinear measurement of wavefront-sensorless adaptive optics system," Opt. Lett. 34, 61-63 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Yang, C. Ftaclas, M. Chun, and D. Toomey, J. Opt. Soc. Am. A 22, 142 (2005). [CrossRef]
  2. A. Dubra, J. Massa, and C. Paterson, Opt. Express 13, 9062 (2005). [CrossRef] [PubMed]
  3. I. D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications (Elsevier, 2003).
  4. K. J. G. Hinnen, R. Fraanje, and M. Verhaegen, Proc. Inst. Mech. Eng. Part I - J. Systems Control Eng. 218, 503 (2004). [CrossRef]
  5. R. K. Tyson, Adaptive Optics Engineering Handbook (Dekker, 2000).
  6. G. Vdovin, Proc. SPIE 3353, 902 (1998). [CrossRef]
  7. M. A. A. Neil, M. J. Booth, and T. Wilson, Opt. Lett. 25, 1083 (2000). [CrossRef]
  8. P. Marsh, D. Burns, and J. Girkin, Opt. Express 11, 1123 (2003). [CrossRef] [PubMed]
  9. L. Foucault, Annales de l'Observatoire imperial de Paris 5, 197 (1859).
  10. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  11. M. Loktev, D. W. D. L. Monteiroa, and G. Vdovin, Opt. Commun. 192, 91 (2001). [CrossRef]
  12. G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited