OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 10 — May. 15, 2009
  • pp: 1555–1557

Direct fabrication of terahertz optical devices on low-absorption polymer substrates

Yong Ma, A. Khalid, Timothy D. Drysdale, and David R. S. Cumming  »View Author Affiliations

Optics Letters, Vol. 34, Issue 10, pp. 1555-1557 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (370 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have fabricated terahertz wire grid polarizer and terahertz bandpass filter devices on high-density polyethylene substrates using simple photolithographic fabrication techniques. The performance of the fabricated devices was measured using a Fourier transform IR spectrometer. Both devices showed good performance in the terahertz frequency range up to 5 THz, in agreement with rigorous coupled-wave analysis (polarizer) and finite-difference time-domain (filter) simulations. Our results successfully demonstrate the use of standard fabrication techniques to produce large-aperture free-standing terahertz optical devices on low-absorption polymer materials with the advantage of low cost using a simple fabrication process. The fabricated polarizer had better than 30 dB extinction ratio at 3 THz. Bandpass filters were demonstrated at three different center frequencies (1.5, 1.8, 2.9 THz) with a 3 dB insertion loss and 2 Q 7 .

© 2009 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.5440) Optical devices : Polarization-selective devices
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: February 17, 2009
Revised Manuscript: April 9, 2009
Manuscript Accepted: April 14, 2009
Published: May 12, 2009

Yong Ma, A. Khalid, Timothy D. Drysdale, and David R. S. Cumming, "Direct fabrication of terahertz optical devices on low-absorption polymer substrates," Opt. Lett. 34, 1555-1557 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. W. Lee and Q. Hu, Opt. Lett. 30, 2563 (2005). [CrossRef] [PubMed]
  2. D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, ChemPhysChem 8, 2412 (2007). [CrossRef] [PubMed]
  3. W. A. Challener, P. L. Richards, and S. C. Zilio, Infrared Phys. 20, 215 (1980). [CrossRef]
  4. A. E. Costley, K. H. Hursey, G. F. Neill, and J. M. Ward, J. Opt. Soc. Am. 67, 979 (1977). [CrossRef]
  5. D. R. S. Cumming and R. J. Blaikie, Opt. Commun. 163, 164 (1999). [CrossRef]
  6. A. Melo, M. A. Kornberg, P. Kaufmann, M. H. Piazzetta, E. C. Bortolucci, M. B. Zakia, O. H. Bauer, A. Poglitsch, and A. M. P. Alves da Silva, Appl. Opt. 47, 6064 (2008). [CrossRef] [PubMed]
  7. M. Naftaly and R. E. Miles, Proc. IEEE 95, 1658 (2007). [CrossRef]
  8. T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, Appl. Phys. Lett. 83, 5362 (2003). [CrossRef]
  9. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  10. P. Callaghan, E. A. Parker, and R. J. Langley, IEE Proc., Part H 138, 448 (1991).
  11. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, Appl. Phys. Lett. 85, 5173 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited