OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 11 — Jun. 1, 2009
  • pp: 1621–1623

Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency-doubled dye laser

P. Thoumany, T. Hänsch, G. Stania, L. Urbonas, and Th. Becker  »View Author Affiliations

Optics Letters, Vol. 34, Issue 11, pp. 1621-1623 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate Doppler-free, purely optical detection of laser-excited rubidium Rydberg atoms in a room-temperature gas cell. The Rydberg atoms are excited with a frequency-doubled dye laser at 297 nm in a single-excitation step from the ground state; the detection is performed with a 780 nm diode laser in a scheme similar to electron shelving. Laser spectroscopy of Rydberg transitions is demonstrated, and a frequency-doubled dye is stabilized to one Rydberg transition in the UV. The performance of this stabilization is measured with an atomic-beam apparatus and a time of flight experiment.

© 2009 Optical Society of America

OCIS Codes
(020.5780) Atomic and molecular physics : Rydberg states
(300.0300) Spectroscopy : Spectroscopy
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6380) Spectroscopy : Spectroscopy, modulation
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:

Original Manuscript: January 30, 2009
Revised Manuscript: March 24, 2009
Manuscript Accepted: April 9, 2009
Published: May 20, 2009

P. Thoumany, T. Hänsch, G. Stania, L. Urbonas, and Th. Becker, "Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency-doubled dye laser," Opt. Lett. 34, 1621-1623 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. F. Gallagher, Rydberg Atoms (Cambridge U. Press, 1994).
  2. S. Haroche and J. M. Raimond, Exploring the Quantum (Oxford U. Press, 2006).
  3. Th. Becker, B. Varcoe, B. G. Englert, and H. Walther, Rep. Prog. Phys. 69, 1325 (2006).
  4. J. H. Choi, B. Knuffman, T. Cubel Liebisch, A. Reinhard, and G. Raithel, Adv. At., Mol., Opt. Phys. 54, 131 (2007).
  5. G. M. Lankhuijzen and L. D. Noordam, Adv. At., Mol., Opt. Phys. 38, 121 (1998).
  6. D. J. Bradley, P. Ewart, J. V. Nicholas, and J. R. D. Shaw, J. Phys. B 6, 1594 (1973).
  7. J. R. Rubbmark, S. A. Borgström, and K. Bockasten, J. Phys. B 10, 421 (1977).
  8. M. Auzinsh, K. Blushs, R. Ferber, F. Gahbauer, A. Jarmola, and M. Tamanis, Opt. Commun. 264, 333 (2006).
  9. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Phys. Rev. Lett. 98, 113003 (2007). [PubMed]
  10. S. Mauger, J. Millen, and M. P. A. Jones, J. Phys. B 40, F319 (2007).
  11. R. P. Abel, A. K. Moahpatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and Ch. Adams, Appl. Phys. Lett. 94, 071107 (2009).
  12. H. Dehmelt, IEEE Trans. Instrum. Meas. 31, 83 (1982).
  13. B. P. Stoicheff and E. Weinberger, Phys. Rev. Lett. 44, 733 (1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited