OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 11 — Jun. 1, 2009
  • pp: 1738–1740

Direct-gap optical gain of Ge on Si at room temperature

Jifeng Liu, Xiaochen Sun, Lionel C. Kimerling, and Jurgen Michel  »View Author Affiliations

Optics Letters, Vol. 34, Issue 11, pp. 1738-1740 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (316 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lasers on Si are crucial components of monolithic electronic–photonic integration. Recently our theoretical analysis has shown that Ge, a pseudodirect bandgap material compatible with Si complementary metal oxide semiconductor technology, can be band engineered by tensile strain and n-type doping to achieve efficient light emission and optical gain from its direct gap transition. We report on what is to our knowledge the first experimental observation of optical gain in the wavelength range of 1600–1608 nm from the direct-gap transition of n + tensile-strained Ge on Si at room temperature under steady-state optical pumping. This experimental result confirms that the band-engineered Ge on Si is a promising gain medium for monolithic lasers on Si.

© 2009 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(160.3380) Materials : Laser materials
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Integrated Optics

Original Manuscript: March 13, 2009
Revised Manuscript: April 23, 2009
Manuscript Accepted: April 26, 2009
Published: May 29, 2009

Jifeng Liu, Xiaochen Sun, Lionel C. Kimerling, and Jurgen Michel, "Direct-gap optical gain of Ge on Si at room temperature," Opt. Lett. 34, 1738-1740 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Lockwood and L. Pavesi, Silicon Photonics (Springer-Verlag, 2004), p. 50.
  2. N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992). [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000). [CrossRef] [PubMed]
  4. B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994). [CrossRef]
  5. A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys.: Condens. Matter 6, L319 (1994). [CrossRef]
  6. C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998). [CrossRef]
  7. G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997). [CrossRef]
  8. D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997). [CrossRef]
  9. M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003). [CrossRef]
  10. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, Opt. Express 14, 9203 (2006). [CrossRef] [PubMed]
  11. M. J. Lee and E. A. Fitzgerald, J. Appl. Phys. 97, 011101 (2005). [CrossRef]
  12. D. H. Ahn, C. Y. Hong, J. F. Liu, M. Beals, W. Giziewicz, L. C. Kimerling, and J. Michel, Opt. Express 15, 3916 (2007). [CrossRef] [PubMed]
  13. J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, Nat. Photonics 2, 433 (2008). [CrossRef]
  14. Physics of Group IV Elements and III-V Compounds, Vol. 17a of Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, O.Madelung, ed. (Springer, 1982).
  15. J. Liu, X. Sun, D. Pan, X. X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Express 15, 11272 (2007). [CrossRef] [PubMed]
  16. J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, The Fifth IEEE International Conference on Group IV Photonic (2008), pp. 16-18. [CrossRef]
  17. X. C. Sun, J. F. Liu, L. C. Kimerling, J. Michel, and T. L. Koch, 2008 OSA Conference on Integrated Photonics and Nanophotonics Research and Application (Optical Society of America, 2008), paper IMC5.
  18. X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1198 (2009). [CrossRef] [PubMed]
  19. H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999). [CrossRef]
  20. Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, Appl. Phys. Lett. 82, 2044 (2003). [CrossRef]
  21. J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, Phys. Rev. B 70, 155309 (2004). [CrossRef]
  22. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).
  23. V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, Appl. Phys. Lett. 93, 111115 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited