OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 11 — Jun. 1, 2009
  • pp: 1741–1743

Regularized quadratic cost function for oriented fringe-pattern filtering

Jesús Villa, Juan Antonio Quiroga, and Ismael De la Rosa  »View Author Affiliations

Optics Letters, Vol. 34, Issue 11, pp. 1741-1743 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use the regularization theory in a Bayesian framework to derive a quadratic cost function for denoising fringe patterns. As prior constraints for the regularization problem, we propose a Markov random field model that includes information about the fringe orientation. In our cost function the regularization term imposes constraints to the solution (i.e., the filtered image) to be smooth only along the fringe’s tangent direction. In this way as the fringe information and noise are conveniently separated in the frequency space, our technique avoids blurring the fringes. The attractiveness of the proposed filtering method is that the minimization of the cost function can be easily implemented using iterative methods. To show the performance of the proposed technique we present some results obtained by processing simulated and real fringe patterns.

© 2009 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(100.3020) Image processing : Image reconstruction-restoration

ToC Category:
Imaging Systems

Original Manuscript: March 10, 2009
Revised Manuscript: April 20, 2009
Manuscript Accepted: April 27, 2009
Published: May 29, 2009

Jesús Villa, Juan Antonio Quiroga, and Ismael De la Rosa, "Regularized quadratic cost function for oriented fringe-pattern filtering," Opt. Lett. 34, 1741-1743 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Geman and D. Geman, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 721 (1984). [CrossRef]
  2. M. Rivera and J. L. Marroquin, Image Vis. Comput. 21, 345 (2003). [CrossRef]
  3. J. E. Besag, J. R. Stat. Soc. Ser. B (Methodol.) 36, 192 (1974).
  4. J. Villa, M. Servín, and L. Castillo, Opt. Commun. 161, 13 (1999). [CrossRef]
  5. M. Rivera and J. L. Marroquin, Opt. Lett. 29, 504 (2004). [CrossRef] [PubMed]
  6. C. Tang, L. Han, H. Ren, D. Zhou, Y. Chang, X. Wang, and X. Cui, Opt. Lett. 33, 2179 (2008). [CrossRef] [PubMed]
  7. H. Derin, H. Elliot, R. Cristi, and D. Geman, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 707 (1984). [CrossRef]
  8. C. Bouman and K. Sauer, IEEE Trans. Nucl. Sci. 99, 1144 (1992).
  9. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins Press, 1990).
  10. X. Yang, Q. Yu, and S. Fu, Opt. Commun. 274, 286 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited