OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 12 — Jun. 15, 2009
  • pp: 1768–1770

Performance of a picosecond x-ray delay line unit at 8.39 keV

Wojciech Roseker, Hermann Franz, Horst Schulte-Schrepping, Anita Ehnes, Olaf Leupold, Federico Zontone, Aymeric Robert, and Gerhard Grübel  »View Author Affiliations

Optics Letters, Vol. 34, Issue 12, pp. 1768-1770 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A prototype device capable of splitting an x-ray pulse into two adjustable fractions, delaying one of them with the aim to perform x-ray photon correlation spectroscopy and pump–probe type studies, was designed, manufactured, and tested. The device utilizes eight perfect silicon crystals in vertical 90° scattering geometry. Its performance has been verified with 8.39 keV synchrotron radiation. The measured throughput of the device with a Si(333) premonochromator at 8.39 keV under ambient conditions is 0.6%. Time delays up to 2.62 ns have been achieved, detected with a time resolution of 16.7 ps .

© 2009 Optical Society of America

OCIS Codes
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)
(320.7100) Ultrafast optics : Ultrafast measurements
(340.0340) X-ray optics : X-ray optics
(340.6720) X-ray optics : Synchrotron radiation

ToC Category:
X-ray Optics

Original Manuscript: March 9, 2009
Manuscript Accepted: April 16, 2009
Published: June 2, 2009

Wojciech Roseker, Hermann Franz, Horst Schulte-Schrepping, Anita Ehnes, Olaf Leupold, Federico Zontone, Aymeric Robert, and Gerhard Grübel, "Performance of a picosecond x-ray delay line unit at 8.39 keV," Opt. Lett. 34, 1768-1770 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Grübel and F. Zontone, J. Alloys Compd. 362, 3 (2004). [CrossRef]
  2. http://xfel.desy.de/.
  3. http://www-ssrl.slac.stanford.edu/lcls/science.html.
  4. R. Mitzner, M. Neeb, T. Noll, N. Pontius, and W. Eberhardt, Proc. SPIE 5920, 86 (2005).
  5. Technical Design Report, Part V, G.Materlik and Th.Tschentscher, eds. (DESY, 2001).
  6. http://ssrl.slac.stanford.edu/lcls/cdr/.
  7. S. Joksch, W. Graeff, J. Hastings, and D. P. Siddons, Rev. Sci. Instrum. 63, 1114 (1992). [CrossRef]
  8. G. Grübel, G. B. Stephenson, C. Gutt, H. Sinn, and Th. Tschentscher, Nucl. Instrum. Methods Phys. Res. B 262, 357 (2007). [CrossRef]
  9. B. W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681 (1964). [CrossRef]
  10. R. J. Dejus and M. S. del Rio, Proc. SPIE 3152, 148 (1997). [CrossRef]
  11. O. Seeck, HASYLAB Annual Report (HASYLAB, 2006), pp. 333-336.
  12. S. Kishimoto, Rev. Sci. Instrum. 63, 824 (1992). [CrossRef]
  13. T. Kato, S. Omachi, and H. Aso, Lect. Notes Comput. Sci. 2396, 405 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited