OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 12 — Jun. 15, 2009
  • pp: 1885–1887

Temporal Lau effect: a multiwavelength self-imaging phenomenon

Víctor Torres-Company, Carlos R. Fernández-Pousa, and Lawrence R. Chen  »View Author Affiliations

Optics Letters, Vol. 34, Issue 12, pp. 1885-1887 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (395 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We provide experimental evidence of the temporal analog of the spatial Lau phenomenon. This effect can be interpreted as an incoherent superposition of multiple temporal self-images. Using an array of continuous-wave lasers modulated by a single external electro-optic modulator driven by a repetitive pattern, and dispersing the light in a medium satisfying the integer Talbot self-imaging condition, each monochromatic carrier generates a temporally shifted self-image. We show experimentally that, if the wavelength separation satisfies the temporal Lau condition, the self-images appear superimposed in intensity. The requirements for this incoherent regime are analyzed. This work paves the way to achieve multiwavelength pulse trains with the ability to control the time interleaving between pulses, with potential applications for pulse shaping and high-speed sampling.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 20, 2009
Manuscript Accepted: May 6, 2009
Published: June 12, 2009

Víctor Torres-Company, Carlos R. Fernández-Pousa, and Lawrence R. Chen, "Temporal Lau effect: a multiwavelength self-imaging phenomenon," Opt. Lett. 34, 1885-1887 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. M. Mielke, G. A. Alphonse, and P. J. Delfyett, IEEE J. Sel. Areas Commun. 25, 120 (2007). [CrossRef]
  2. J. van Howe, J. Hansryd, and C. Xu, Opt. Lett. 29, 1470 (2004). [CrossRef] [PubMed]
  3. J. van Howe and C. Xu, J. Lightwave Technol. 24, 2649 (2006). [CrossRef]
  4. J. Jahns and A. W. Lohmann, Opt. Commun. 28, 263 (1979). [CrossRef]
  5. D. Zalvidea, R. Duchowicz, and E. E. Sicre, Appl. Opt. 43, 3005 (2004). [CrossRef] [PubMed]
  6. J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, and P. Andrés, J. Eur. Opt. Soc. Rapid Publ. 1, 06018 (2006). [CrossRef]
  7. K. Patorski, Prog. Opt. 27, 3 (1989).
  8. J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001). [CrossRef]
  9. J. Azaña and M. A. Muriel, IEEE Photon. Technol. Lett. 13, 1358 (2001). [CrossRef]
  10. B. Bortnik, I. Y. Poberezhskiy, J. Chou, B. Jalali, and H. R. Fetterman, J. Lightwave Technol. 24, 2752 (2006). [CrossRef]
  11. L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited