OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 12 — Jun. 15, 2009
  • pp: 1909–1911

Leaky waveguide modes along the edge of a dielectric wedge

Tobias Maletzky, Kazuo Tanaka, Thierry Grosjean, and Ulrich C. Fischer  »View Author Affiliations

Optics Letters, Vol. 34, Issue 12, pp. 1909-1911 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (295 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is shown experimentally that a Gaussian beam focused from within a finite wedge onto its edge at an angle of total reflection excites a leaky waveguide mode propagating along the edge. This newly described phenomenon is interpreted in terms of waveguide modes of a tapered dielectric slab of a mode index, which is known to decrease with slab thickness. This decrease in the refractive index leads to a gradual refraction of the incident beam parallel to the edge. A numerical simulation of a focused Gaussian beam incident on a finite dielectric wedge gives a full account of this phenomenon.

© 2009 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(230.0230) Optical devices : Optical devices
(230.7370) Optical devices : Waveguides
(230.7400) Optical devices : Waveguides, slab
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Optical Devices

Original Manuscript: March 17, 2009
Revised Manuscript: May 11, 2009
Manuscript Accepted: May 12, 2009
Published: June 12, 2009

Tobias Maletzky, Kazuo Tanaka, Thierry Grosjean, and Ulrich C. Fischer, "Leaky waveguide modes along the edge of a dielectric wedge," Opt. Lett. 34, 1909-1911 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. R. Horowitz and T. Tamir, J. Opt. Soc. Am. 61, 586 (1971). [CrossRef]
  2. B. Polat, E. Topuz, and L. Sevgi, AEU, Int. J. Electron. Commun. 52, 105 (1998).
  3. T. R. Matzelle, H. Gnaegi, A. Ricker, and R. Reichelt, J. Microsc. 209, 113 (2003). [CrossRef] [PubMed]
  4. U. C. Fischer, J. Koglin, and H. Fuchs, J. Microsc. 176, 231 (1994). [CrossRef]
  5. D. K. Gramotnev, J. Appl. Phys. 98, 104302 (2005). [CrossRef]
  6. K. Tanaka, G.W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, Appl. Phys. B 93, 257 (2008). [CrossRef]
  7. P. Zwamborn and P. M. van den Berg, IEEE Trans. Microwave Theory Tech. 40, 1757 (1992). [CrossRef]
  8. K. Tanaka, M. Tanaka, and T. Sugiyama, Opt. Express 13, 256 (2005). [CrossRef] [PubMed]
  9. L. Kang and R. E. Dessy, Crit. Rev. Anal. Chem. 21, 377 (1990). [CrossRef]
  10. T. Hashimoto and T. Yoshino, Opt. Lett. 14, 913 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited