OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 13 — Jul. 1, 2009
  • pp: 1958–1960

Control of thermal deformation in dielectric mirrors using mechanical design and atomic layer deposition

Nicholas T. Gabriel, Sangho S. Kim, and Joseph J. Talghader  »View Author Affiliations

Optics Letters, Vol. 34, Issue 13, pp. 1958-1960 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (309 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A mechanical design technique for optical coatings that simultaneously controls thermal deformation and optical reflectivity is reported. The method requires measurement of the refractive index and thermal stress of single films prior to the design. Atomic layer deposition was used for deposition because of the high repeatability of the film constants. An Al 2 O 3 / HfO 2 distributed Bragg reflector was deposited with a predicted peak reflectivity of 87.9% at 542.4 nm and predicted edge deformation of −360 nm/K on a 10 cm silicon substrate. The measured peak reflectivity was 85.7% at 541.7 nm with an edge deformation of −346 nm/K.

© 2009 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(310.1860) Thin films : Deposition and fabrication
(310.3840) Thin films : Materials and process characterization
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

Original Manuscript: March 18, 2009
Revised Manuscript: May 21, 2009
Manuscript Accepted: May 26, 2009
Published: June 23, 2009

Nicholas T. Gabriel, Sangho S. Kim, and Joseph J. Talghader, "Control of thermal deformation in dielectric mirrors using mechanical design and atomic layer deposition," Opt. Lett. 34, 1958-1960 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Timoshenko, J. Opt. Soc. Am. 11, 233 (1925). [CrossRef]
  2. M. Vasudevan and W. Johnson, Appl. Sci. Res., Sect. B 9, 420 (1963). [CrossRef]
  3. W. Liu and J. Talghader, Appl. Opt. 41, 3285 (2002). [CrossRef] [PubMed]
  4. D. Riihelä, M. Ritala, R. Matero, and M. Leskelä, Thin Solid Films 289, 250 (1996). [CrossRef]
  5. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  6. G. S. Higashi and C. G. Fleming, Appl. Phys. Lett. 55, 1963 (1989). [CrossRef]
  7. D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, Chem. Mater. 14, 4350 (2002). [CrossRef]
  8. S. S. Kim, N. T. Gabriel, W. Song, and J. J. Talghader, Opt. Express 15, 16285 (2007). [CrossRef] [PubMed]
  9. W. A. Brantley, J. Appl. Phys. 44, 534 (1973). [CrossRef]
  10. Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984). [CrossRef]
  11. G. G. Stoney, Proc. R. Soc. London, Ser. A 82, 172 (1909). [CrossRef]
  12. Z. Feng and H. Liu, J. Appl. Phys. 54, 83 (1983). [CrossRef]
  13. C. H. Hsueh, Thin Solid Films 418, 182 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited