OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 13 — Jul. 1, 2009
  • pp: 2033–2035

Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm

Xiang Zhou, Hong Zhao, and Tao Jiang  »View Author Affiliations

Optics Letters, Vol. 34, Issue 13, pp. 2033-2035 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (363 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approach based on a novel technique, called ensemble empirical mode decomposition, is proposed to adaptively reduce noise and remove background intensity from a two-dimensional fringe pattern. It can solve the mode-mixing problem of the original empirical mode decomposition caused by the existence of intermittent noise in fringe signals. Then a strategy is developed to automatically identify and group the resulting intrinsic mode functions for the purpose of eliminating noise and background of the fringe pattern. This approach is applied to process the simulated and practical fringe patterns, compared with Fourier transform and wavelet methods.

© 2009 Optical Society of America

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: February 24, 2009
Revised Manuscript: May 2, 2009
Manuscript Accepted: May 13, 2009
Published: June 29, 2009

Xiang Zhou, Hong Zhao, and Tao Jiang, "Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm," Opt. Lett. 34, 2033-2035 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Takeda and K. Mutoh, Appl. Opt. 22, 3977 (1983). [CrossRef] [PubMed]
  2. Q. Kemao, Appl. Opt. 43, 2695 (2004). [CrossRef] [PubMed]
  3. J. G. Zhong and J. W. Weng, Appl. Opt. 43, 4993 (2004). [CrossRef] [PubMed]
  4. L. R. Watkins, S. M. Tan, and T. H. Barnes, Opt. Lett. 24, 905 (1999). [CrossRef]
  5. J. G. Zhong and J. W. Weng, Opt. Lett. 30, 2560 (2005). [CrossRef] [PubMed]
  6. A. Federico and G. H. Kaufmann, Appl. Opt. 42, 7066 (2003). [CrossRef] [PubMed]
  7. S. Ozder, O. Kocahan, E. Coskun, and H. Goktas, Opt. Lett. 32, 591 (2007). [CrossRef] [PubMed]
  8. N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. London, Ser. A 454, 903 (1998). [CrossRef]
  9. M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, Opt. Lasers Eng. 45, 723 (2007). [CrossRef]
  10. M. B. Bernini, A. Federico, and G. H. Kaufmann, Appl. Opt. 47, 2592 (2008). [CrossRef] [PubMed]
  11. Z. Wu and N. E. Huang, Ensemble Empirical Mode Decomposition: a Noise Assisted Data Analysis Method, Tech. Rep. No. 193 (Centre for Ocean-Land-Atmosphere Studies, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited