OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 13 — Jul. 1, 2009
  • pp: 2078–2080

Large enhancement of light-extraction efficiency from optically pumped, nanorod light-emitting diodes

Mei-Ling Kuo, Ya-Ju Lee, Thomas C. Shen, and Shawn-Yu Lin  »View Author Affiliations

Optics Letters, Vol. 34, Issue 13, pp. 2078-2080 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a threefold enhancement of light-emission intensity at λ = 460 nm and a 16-fold extraction-efficiency enhancement measured from a 2D array of nanorod LEDs. The nano-LEDs are randomly arranged and have a typical rod diameter of 100 250 nm . From a combination of photoluminescence, reflectance, and excitation power-dependence measurements, we show that the enhanced emission is due mainly to modification of the extraction efficiency, and not to that of the internal efficiency. Furthermore, we show that the extraction enhancement originates from the randomness of the 2D array that scatters light efficiently into the air and the smallness of the nanorods that eliminates the guiding modes that trap light.

© 2009 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(230.3670) Optical devices : Light-emitting diodes

ToC Category:

Original Manuscript: April 6, 2009
Revised Manuscript: June 1, 2009
Manuscript Accepted: May 8, 2009
Published: June 30, 2009

Mei-Ling Kuo, Ya-Ju Lee, Thomas C. Shen, and Shawn-Yu Lin, "Large enhancement of light-extraction efficiency from optically pumped, nanorod light-emitting diodes," Opt. Lett. 34, 2078-2080 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001). [CrossRef] [PubMed]
  2. W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. (Weinheim, Ger.) 15, 526 (2003). [CrossRef]
  3. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999). [CrossRef]
  4. H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004). [CrossRef]
  5. H. Kuwata, H. Tamaru, and K. Esumi, Appl. Phys. Lett. 83, 4625 (2003). [CrossRef]
  6. H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, and Y. H. Lee, Appl. Phys. Lett. 78, 1174 (2001). [CrossRef]
  7. H. M. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006). [CrossRef]
  8. P. Kiesel, F. Renner, M. Kneissi, N. Johnson, and G. Dohler, Phys. Status Solidi A 188, 131 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited