OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 34, Iss. 14 — Jul. 15, 2009
  • pp: 2225–2227

FM-eliminated C 2 H 2 frequency-stabilized laser diode with an RIN of 135 dB Hz and a linewidth of 4 kHz

Keisuke Kasai and Masataka Nakazawa  »View Author Affiliations


Optics Letters, Vol. 34, Issue 14, pp. 2225-2227 (2009)
http://dx.doi.org/10.1364/OL.34.002225


View Full Text Article

Enhanced HTML    Acrobat PDF (390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the frequency stabilization of a 1.5 μ m laser diode (LD) with a low-intensity noise and a narrow linewidth to a C 2 13 H 2 linear absorption line. The LD consists of an InP gain chip and an external Bragg reflector made of a PLC waveguide. By employing an external frequency modulator in a frequency stabilization circuit, an FM-eliminated optical output beam was obtained. The frequency stabilities reached as high as 2.3 × 10 11 for τ = 1 s and 9.1 × 10 12 for τ = 100 s . Furthermore, an RIN of less than 135 dB Hz and a linewidth of 4 kHz were simultaneously achieved.

© 2009 Optical Society of America

OCIS Codes
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 1, 2009
Manuscript Accepted: June 10, 2009
Published: July 14, 2009

Citation
Keisuke Kasai and Masataka Nakazawa, "FM-eliminated C2H2 frequency-stabilized laser diode with an RIN of −135 dB/Hz and a linewidth of 4 kHz," Opt. Lett. 34, 2225-2227 (2009)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-14-2225

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited