OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 16 — Aug. 15, 2009
  • pp: 2414–2416

Nanoindentation study on germania-doped silica glass preforms: evidence for the compaction–densification model of photosensitivity

R. Aashia, K. V. Madhav, U. Ramamurty, and S. Asokan  »View Author Affiliations

Optics Letters, Vol. 34, Issue 16, pp. 2414-2416 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (211 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanoindentation technique was employed to measure the changes in mechanical properties of a glass preform subjected to different levels of UV exposure. The results reveal that short-term exposure leads to an appreciable increase in the Young’s modulus (E), suggesting the densification of the glass, confirming the compaction–densification model. However, on prolonged exposure, E decreases, which provides what we believe to be the first direct evidence of dilation in the glass leading into the Type IIA regime. The present results rule out the hypothesis that continued exposure leads to an irreversible compaction and prove that index modulation regimes are intrinsic to the glass matrix.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity
(160.5335) Materials : Photosensitive materials

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 24, 2009
Manuscript Accepted: July 9, 2009
Published: August 5, 2009

R. Aashia, K. V. Madhav, U. Ramamurty, and S. Asokan, "Nanoindentation study on germania-doped silica glass preforms: evidence for the compaction-densification model of photosensitivity," Opt. Lett. 34, 2414-2416 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Othonos and K. Kalli, in Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), pp. 9-95.
  2. J. Canning, Laser Photonics Rev. 2, 275 (2008). [CrossRef]
  3. L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russel, and D. N. Payne, Appl. Opt. 34, 3436 (1995). [CrossRef] [PubMed]
  4. B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, Opt. Mater. 4, 441 (1995). [CrossRef]
  5. C. Fiori and R. A. B. Devine, Proceeding of Materials Research Society Symposium (1986), pp. 187-195.
  6. M. Lancry, N. Groothoff, B. Poumellec, and J. Canning, Appl. Phys. B 94, 589 (2009). [CrossRef]
  7. E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Yu. N. Pyrkov, N. H. Ky, H. G. Limberger, and R. P. Salathe, Opt. Lett. 22, 1754 (1997). [CrossRef]
  8. I. Michelakaki and S. Pissadakis, Appl. Phys. A 95, 453 (2009). [CrossRef]
  9. L. J. Gibson, J. Biomech. 18, 317 (1985). [CrossRef] [PubMed]
  10. Nguyen Hong Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, Opt. Commun. 225, 313 (2003). [CrossRef]
  11. K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, Appl. Opt. 38, 1086 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited