OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 34, Iss. 16 — Aug. 15, 2009
  • pp: 2542–2544

Fiber-coupled semiconductor waveguides as an efficient optical interface to a single quantum dipole

Marcelo Davanço and Kartik Srinivasan  »View Author Affiliations


Optics Letters, Vol. 34, Issue 16, pp. 2542-2544 (2009)
http://dx.doi.org/10.1364/OL.34.002542


View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the interaction of a single quantum dipole with the modes of a fiber-coupled semiconductor waveguide. Through a combination of tight modal confinement and phase-matched evanescent coupling, we predict that 70 % of the dipole’s emission can be collected into a single-mode optical fiber. We further show that the dipole strongly modifies resonant light transmission through the system, with a change of over 1 order of magnitude for an appropriate choice of fiber-waveguide coupler geometry.

© 2009 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Quantum Optics

History
Original Manuscript: May 20, 2009
Revised Manuscript: July 14, 2009
Manuscript Accepted: July 23, 2009
Published: August 14, 2009

Citation
Marcelo Davanço and Kartik Srinivasan, "Fiber-coupled semiconductor waveguides as an efficient optical interface to a single quantum dipole," Opt. Lett. 34, 2542-2544 (2009)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-16-2542


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Kimble, Phys. Scr., T 76, 127 (1998). [CrossRef]
  2. S. J. van Enk, Phys. Rev. A 69, 043813 (2004). [CrossRef]
  3. P. Domokos, P. Horak, and H. Ritsch, Phys. Rev. A 65, 033832 (2002). [CrossRef]
  4. J. T. Shen and S. Fan, Opt. Lett. 30, 2001 (2005). [CrossRef] [PubMed]
  5. D. E. Chang, A. S. Srensen, E. A. Demler, and M. D. Lukin, Nature 3, 807 (2007).
  6. B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, M. Kroner, K. Karrai, A. Badolato, and P. M. Petroff, Appl. Phys. Lett. 90, 221106 (2007). [CrossRef]
  7. G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, Phys. Rev. Lett. 101, 180404 (2008). [CrossRef] [PubMed]
  8. V. S. C. M. Rao and S. Hughes, Phys. Rev. B 75, 205437 (2007). [CrossRef]
  9. G. Lecamp, P. Lalanne, and J. P. Hugonin, Phys. Rev. Lett. 99, 023902 (2007). [CrossRef] [PubMed]
  10. Resonant fluorescence can also be studied, for example, through emission into the backward traveling WG mode.
  11. M. I. Davanço and K. Srinivasan, Opt. Express 17, 10542 (2009). [CrossRef] [PubMed]
  12. W.-P. Huang, J. Opt. Soc. Am. A 11, 963 (1994). [CrossRef]
  13. K. Srinivasan and O. Painter, Nature 450, 862 (2007). [CrossRef] [PubMed]
  14. Far from cutoff, channel WG Epqx,y modes are predominantly x or y polarized, with p and q maxima in the x and y directions respectively.
  15. F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, Phys. Rev. A 72, 032509 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited