OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 18 — Sep. 15, 2009
  • pp: 2766–2768

Experimental demonstration of an all-optical fiber-based Fredkin gate

Natalie Kostinski, Mable P. Fok, and Paul R. Prucnal  »View Author Affiliations

Optics Letters, Vol. 34, Issue 18, pp. 2766-2768 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and report on what we believe to be the first experimental demonstration of an all-optical fiber-based Fredkin gate for reversible digital logic. The simple 3-input/3-output fiber-based nonlinear optical loop mirror architecture requires only minor alignment for full operation. A short nonlinear element, heavily doped GeO 2 fiber (HDF), allows for a more compact design than typical nonlinear fiber gates. The HDF is ideal for studying reversibility, functioning as a noise-limited medium, as compared to the semiconductor optical amplifier, while allowing for cross-phase modulation, a nondissipative optical interaction. We suggest applications for secure communications, based on “cool” computing.

© 2009 Optical Society of America

OCIS Codes
(130.3750) Integrated optics : Optical logic devices
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(200.3760) Optics in computing : Logic-based optical processing
(200.4660) Optics in computing : Optical logic

ToC Category:
Integrated Optics

Original Manuscript: June 24, 2009
Manuscript Accepted: July 26, 2009
Published: September 9, 2009

Natalie Kostinski, Mable P. Fok, and Paul R. Prucnal, "Experimental demonstration of an all-optical fiber-based Fredkin gate," Opt. Lett. 34, 2766-2768 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009). [CrossRef]
  2. X. Ma, J. Huang, and F. Lombardi, ACM J. Emerging Technol. Comput. Syst. 3, 1 (2008). [CrossRef]
  3. W. D. Pan and M. Nalasani, IEEE Potentials 24, 38 (2005). [CrossRef]
  4. E. Fredkin and T. Toffoli, Int. J. Theor. Phys. 21, 219 (1982). [CrossRef]
  5. R. P. Feynman, Feynman Lectures on Computation (Perseus, 1996).
  6. J. Hardy and J. Shamir, Opt. Express 15, 150 (2007). [CrossRef] [PubMed]
  7. J. Shamir, H. J. Caulfield, W. Micelli, and R. Seymour, Appl. Opt. 25, 1604 (1986). [CrossRef] [PubMed]
  8. A. J. Poustie and K. J. Blow, Opt. Commun. 174, 317 (2000). [CrossRef]
  9. G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989). [CrossRef] [PubMed]
  10. M. N. Islam, Phys. Today 47(5), 34 (1994). [CrossRef]
  11. E. Dianov and V. Mashinsky, J. Lightwave Technol. 23, 3500 (2005). [CrossRef]
  12. B. C. Sanders and G. J. Milburn, Phys. Rev. A 45, 1919 (1992). [CrossRef] [PubMed]
  13. N. Kostinski, K. Kravtsov, and P. R. Prucnal, IEEE Photon. Technol. Lett. 20, 2045 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited