OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 18 — Sep. 15, 2009
  • pp: 2778–2780

Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing

Ardavan F. Oskooi, Chris Kottke, and Steven G. Johnson  »View Author Affiliations

Optics Letters, Vol. 34, Issue 18, pp. 2778-2780 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Finite-difference time-domain methods suffer from reduced accuracy when discretizing discontinuous materials. We previously showed that accuracy can be significantly improved by using subpixel smoothing of the isotropic dielectric function, but only if the smoothing scheme is properly designed. Using recent developments in perturbation theory that were applied to spectral methods, we extend this idea to anisotropic media and demonstrate that the generalized smoothing consistently reduces the errors and even attains second-order convergence with resolution.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.1190) Materials : Anisotropic optical materials
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:

Original Manuscript: May 26, 2009
Revised Manuscript: July 30, 2009
Manuscript Accepted: August 14, 2009
Published: September 9, 2009

Ardavan F. Oskooi, Chris Kottke, and Steven G. Johnson, "Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing," Opt. Lett. 34, 2778-2780 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech, 2005),
  2. C. Kottke, A. Farjadpour, and S. Johnson, Phys. Rev. E 77, 036611 (2008). [CrossRef]
  3. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. Joannopoulos, S. Johnson, and G. Burr, Opt. Lett. 31, 2972 (2006). [CrossRef] [PubMed]
  4. G. Werner and J. Cary, J. Comput. Phys. 226, 1085 (2007). [CrossRef]
  5. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 1732001. [CrossRef] [PubMed]
  6. A. Ditkowski, K. Dridi, and J. S. Hesthaven, J. Comp. Physiol. 170, 39 (2001).
  7. A. J. Ward and J. B. Pendry, J. Mod. Opt. 43, 773 (1996). [CrossRef]
  8. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006). [CrossRef] [PubMed]
  9. Meep FDTD, http://ab-initio.mit.edu/meep.
  10. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, Phys. Rev. B 48, 8434 (1993). [CrossRef]
  11. S. G. Johnson, R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, Phys. Rev. B 55, 15942 (1997).
  12. J.-Y. Lee and N.-H. Myung, Microwave Opt. Technol. Lett. 23, 245 (1999). [CrossRef]
  13. J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 2008).
  14. V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys. 107, 6756 (1997). [CrossRef]
  15. S. Dey and R. Mittra, IEEE Trans. Microwave Theory Tech. 47, 1737 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited