OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 19 — Oct. 1, 2009
  • pp: 2909–2911

Controlling photon absorption in photonic nanowires via dipole–dipole interaction

Mahi R. Singh  »View Author Affiliations

Optics Letters, Vol. 34, Issue 19, pp. 2909-2911 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of the dipole–dipole interaction (DDI) on absorption processes has been investigated in photonic nanowires. They are manufactured by embedding a photonic crystal into another crystal. The embedded crystal is doped with an ensemble of three-level quantum dots. A probe field is applied to monitor the absorption coefficient. A control field is applied to induce dipole moments in quantum dots. Owing to these fields dipoles are induced in quantum dots, and they interact with each other via the DDI. Quantum dots also interact with bound photon states of the nanowire via the electron-bound photon interaction. It is found that the system can be switched from a transparent state to an absorbing state through the DDI. The switching mechanism can be controlled by changing the location of a resonant energy in the quantum dots.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(250.0250) Optoelectronics : Optoelectronics
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(250.6715) Optoelectronics : Switching
(060.6718) Fiber optics and optical communications : Switching, circuit
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Quantum Optics

Original Manuscript: May 12, 2009
Revised Manuscript: July 17, 2009
Manuscript Accepted: August 19, 2009
Published: September 18, 2009

Mahi R. Singh, "Controlling photon absorption in photonic nanowires via dipole–dipole interaction," Opt. Lett. 34, 2909-2911 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Singh, Appl. Phys. B 93, 91 (2008). [CrossRef]
  2. E. Istrate and E. H. Sargent, Rev. Mod. Phys. 78, 455 (2006). [CrossRef]
  3. S. John, Phys. Rev. Lett. 58, 2486 (1987). [CrossRef] [PubMed]
  4. J. P. Dowling and C. M. Bowden, Phys. Rev. A 47, 1247 (1997).
  5. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Phys. Rev. Lett. 94, 137404 (2005). [CrossRef] [PubMed]
  6. Ö. Çakir, A. A. Klyachko, and A. S. Shumovsky, Phys. Rev. A 71, 034303 (2005). [CrossRef]
  7. C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H. Walther, Phys. Rev. A 64, 053803 (2001). [CrossRef]
  8. S. John and J. Wang, Phys. Rev. B 43, 12772 (1991). [CrossRef]
  9. M. R. Singh, Phys. Lett. A 372, 5083 (2008). [CrossRef]
  10. J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, Phys. Rev. Lett. 94, 157403 (2005). [CrossRef] [PubMed]
  11. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited