OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 19 — Oct. 1, 2009
  • pp: 2915–2917

Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes

Feng Li, Zetian Mi, and Sahmuganathan Vicknesh  »View Author Affiliations

Optics Letters, Vol. 34, Issue 19, pp. 2915-2917 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (287 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the achievement of strong coherent emission from GaAs-based single-walled spiral microtubes, wherein photons are localized in an ultrathin ( λ / 25 ) region embedded with self-organized InGaAs quantum dots. The emission spectra measured at 300 K are characterized by a regular sequence of sharp optical modes with a maximum Q factor of 2500 and separation of 7   meV . The three-dimensional confinement of photons is made possible by the epitaxially smooth tube surface as well as an engineered surface geometry, achieved using a single photolithography step. The experimental results are analyzed using an equivalent planar dielectric waveguide model.

© 2009 Optical Society of America

OCIS Codes
(130.3990) Integrated optics : Micro-optical devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: July 2, 2009
Manuscript Accepted: August 9, 2009
Published: September 18, 2009

Feng Li, Zetian Mi, and Sahmuganathan Vicknesh, "Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes," Opt. Lett. 34, 2915-2917 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998). [CrossRef]
  2. Z. H. Zhong, N. M. Gabor, J. E. Sharping, A. L. Gaeta, and P. L. McEuen, Nat. Nanotechnol. 3, 201 (2008). [CrossRef] [PubMed]
  3. C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. Lett. 101, 127403 (2008). [CrossRef] [PubMed]
  4. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Nature 394, 52 (1998). [CrossRef] [PubMed]
  5. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004). [CrossRef] [PubMed]
  6. V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E (Amsterdam) 6, 828 (2000). [CrossRef]
  7. O. G. Schmidt and K. Eberl, Nature 410, 168 (2001). [CrossRef] [PubMed]
  8. C. Deneke and O. G. Schmidt, Physica E (Amsterdam) 23, 269 (2004). [CrossRef]
  9. A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, Microelectron. Eng. 67-68, 782 (2003). [CrossRef]
  10. G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, Appl. Phys. Lett. 94, 141901 (2009). [CrossRef]
  11. C. Deneke, N. Y. Jin-Phillipp, I. Loa, and O. G. Schmidt, Appl. Phys. Lett. 84, 4475 (2004). [CrossRef]
  12. C. Deneke and O. G. Schmidt, Appl. Phys. Lett. 85, 2914 (2004). [CrossRef]
  13. T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, Phys. Rev. Lett. 96, 077403 (2006). [CrossRef] [PubMed]
  14. S. Vicknesh, F. Li, and Z. Mi, Appl. Phys. Lett. 94, 081101 (2009). [CrossRef]
  15. M. Hosoda and T. Shigaki, Appl. Phys. Lett. 90, 181107 (2007). [CrossRef]
  16. K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer Verlag, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited