OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 34, Iss. 2 — Jan. 15, 2009
  • pp: 187–189

Influence of longitudinal rise of coolant temperature on the thermal strain in a cylindrical laser rod

Zhigang Li, Xiulan Huai, Li Wang, and Yujia Tao  »View Author Affiliations


Optics Letters, Vol. 34, Issue 2, pp. 187-189 (2009)
http://dx.doi.org/10.1364/OL.34.000187


View Full Text Article

Enhanced HTML    Acrobat PDF (314 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The thermal strain in a laser rod with a longitudinal temperature increase is modeled and analytically derived through the method of thermoelastic displacement potential and the method of Love displacement function. The analytical results show that in the absence of external forces, the longitudinal rise of fluid temperature has an unnoticeable effect on the thermal stress profile in the laser rod. However, the thermal strain field caused by the temperature distribution under the traction free boundary condition has an evident variation in the longitudinal direction, which will considerably affect the laser transmission characteristics and the beam quality.

© 2009 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 8, 2008
Revised Manuscript: November 20, 2008
Manuscript Accepted: November 26, 2008
Published: January 14, 2009

Citation
Zhigang Li, Xiulan Huai, Li Wang, and Yujia Tao, "Influence of longitudinal rise of coolant temperature on the thermal strain in a cylindrical laser rod," Opt. Lett. 34, 187-189 (2009)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-2-187


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Hello, E. Durand, P. K. Fritschelt, and C. N. Man, J. Mod. Opt. 41, 1371 (1994). [CrossRef]
  2. B. A. Usievich, V. A. Sychugov, F. Pigeon, and A. Tishchenko, IEEE J. Quantum Electron. 37, 1210 (2001). [CrossRef]
  3. S. Chénais, F. Balembois, F. Druon, G. L. Leclin, and P. Georges, IEEE J. Quantum Electron. 40, 1217 (2004). [CrossRef]
  4. W. Xie, Y. Kwon, W. Hu, and F. Zhou, Opt. Eng. (Bellingham) 42, 1787 (2003). [CrossRef]
  5. X. Peng, L. Xu, and A. Asundi, Opt. Eng. (Bellingham) 43, 2454 (2004). [CrossRef]
  6. M. Ostermeyer, D. Mudge, P. J. Veitch, and J. Munch, Appl. Opt. 45, 5368 (2006). [CrossRef] [PubMed]
  7. Z. Li, X. Huai, and Y. Tao, Appl. Phys. B 87, 301 (2007). [CrossRef]
  8. Y. Takeuchi, Thermal Stress (Science, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited