Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers

Not Accessible

Your library or personal account may give you access

Abstract

We experimentally investigate the nonlinear propagation of subnanosecond pulses in solid-core photonic bandgap fibers. By launching pulses with a few kilowatts peak power, a flat supercontinuum is generated. The long-wavelength edge of the supercontinuum can be controlled thanks to the original linear properties inherent to solid-core photonic bandgap fibers. This allows one to tailor the generated supercontinuum radiation and to keep it over a given spectral range of interest without any significant power loss.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers

O. Vanvincq, A. Kudlinski, A. Bétourné, Y. Quiquempois, and G. Bouwmans
J. Opt. Soc. Am. B 27(11) 2328-2335 (2010)

Significant reduction of power fluctuations at the long-wavelength edge of a supercontinuum generated in solid-core photonic bandgap fibers

O. Vanvincq, B. Barviau, A. Mussot, G. Bouwmans, Y. Quiquempois, and A. Kudlinski
Opt. Express 18(23) 24352-24360 (2010)

Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber

Bertrand Kibler, Tadeusz Martynkien, Marcin Szpulak, Christophe Finot, Julien Fatome, Jan Wojcik, Waclaw Urbanczyk, and Stefan Wabnitz
Opt. Express 17(12) 10393-10398 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved