OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 20 — Oct. 15, 2009
  • pp: 3113–3115

Pulse propagation in a fiber Bragg grating written in a slow saturable fiber amplifier

Yuval P. Shapira and Moshe Horowitz  »View Author Affiliations

Optics Letters, Vol. 34, Issue 20, pp. 3113-3115 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a model to study nonlinear pulse propagation in a fiber Bragg grating written in an erbium-doped fiber amplifier. The saturation effect in such amplifiers depends on the accumulated energy along the pulse rather than on the pulse instantaneous power. We have shown that the gain saturation effect cannot be neglected when Bragg solitons are amplified by erbium-doped fiber amplifiers. The slow saturation of the amplifier limits the output pulse power, and it tends to split the amplified pulse into several pulses. We have shown that when the propagation velocity of the amplified pulses decreases, the amplifier gain per unit length increases.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 14, 2009
Manuscript Accepted: August 19, 2009
Published: October 7, 2009

Yuval P. Shapira and Moshe Horowitz, "Pulse propagation in a fiber Bragg grating written in a slow saturable fiber amplifier," Opt. Lett. 34, 3113-3115 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987). [CrossRef] [PubMed]
  2. J. E. Sipe and H. G. Winful, Opt. Lett. 13, 132 (1988). [CrossRef] [PubMed]
  3. D. N. Christodoulides and R. I. Joseph, Phys. Rev. Lett. 62, 1746 (1989). [CrossRef] [PubMed]
  4. A. B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37 (1989). [CrossRef]
  5. B. J. Eggleton, R. E. Slusher, C. M. deSterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996). [CrossRef] [PubMed]
  6. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006). [CrossRef]
  7. C. M. de Sterke and J. E. Sipe, Phys. Rev. A 43, 2467 (1991). [CrossRef]
  8. H. Sakaguchi and B. A. Malomed, Phys. Rev. E 77, 056606 (2008). [CrossRef]
  9. C. R. Giles and E. Desurvire, J. Lightwave Technol. 9, 271 (1991). [CrossRef]
  10. K. Motoshima, L. M. Leba, D. N. Chen, M. M. Downs, T. Li, and E. Desurvire, IEEE Photon. Technol. Lett. 5, 1423 (1993). [CrossRef]
  11. A. Rosenthal and M. Horowitz, Opt. Lett. 31, 1334 (2006). [CrossRef] [PubMed]
  12. G. P. Agrawal, Phys. Rev. A 44, 7493 (1991). [CrossRef] [PubMed]
  13. R. L. Smith, Am. J. Phys. 38, 978 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited