OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 20 — Oct. 15, 2009
  • pp: 3160–3162

Nonparaxial polarizers

Andrea Aiello, Christoph Marquardt, and Gerd Leuchs  »View Author Affiliations

Optics Letters, Vol. 34, Issue 20, pp. 3160-3162 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a theoretical description for polarizers that goes beyond the paraxial approximation. By combining existing theories for fields with nonplanar wavefronts, we are able to derive a simple power series expansion expressing the electric field of a light beam after a polarizer as a linear function of the field and its spatial derivatives evaluated before the polarizer. The first few terms of such expansion are explicitly given, and their physical meaning is discussed.

© 2009 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: July 14, 2009
Revised Manuscript: September 15, 2009
Manuscript Accepted: September 15, 2009
Published: October 9, 2009

Andrea Aiello, Christoph Marquardt, and Gerd Leuchs, "Nonparaxial polarizers," Opt. Lett. 34, 3160-3162 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. N. Damask, Polarization Optics in Telecommunications, 1st. ed. (Springer, 2004).
  2. L. Cicchitelli, H. Hora, and R. Postle, Phys. Rev. A 41, 3727 (1990). [CrossRef] [PubMed]
  3. W. L. Erikson and S. Singh, Phys. Rev. E 49, 5778 (1994). [CrossRef]
  4. K. Lindfors, A. Priimagi, T. Setala, A. Shevchenko, A. T. Friberg, and M. Kaivola, Nat. Photonics 1, 228 (2007). [CrossRef]
  5. H. P. Urbach and S. F. Pereira, Phys. Rev. Lett. 100, 123904 (2008). [CrossRef] [PubMed]
  6. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008). [CrossRef]
  7. M. O. Scully and M. S. Zubairy, Phys. Rev. A 44, 2656 (1991). [CrossRef] [PubMed]
  8. Y. I. Salamin and C. H. Keitel, Phys. Rev. Lett. 88, 095005 (2002). [CrossRef] [PubMed]
  9. B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000). [CrossRef] [PubMed]
  10. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001). [CrossRef] [PubMed]
  11. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000). [CrossRef]
  12. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  13. M. Xiao, J. Opt. Soc. Am. A 14, 2977 (1997). [CrossRef]
  14. Y. Fainman and J. Shamir, Appl. Opt. 23, 3188 (1984). [CrossRef] [PubMed]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics1st ed. (Cambridge U. Press, 1995).
  16. M. Lax, W. H. Louisell, and W. B. McKnight, Phys. Rev. A 11, 1365 (1975). [CrossRef]
  17. For nonideal polarizers Eq. generalizes to êμ(κ⃗)P-->d0êP(êP*⋅êμ(κ⃗))+d1êQ(êQ*⋅êμ(κ⃗)), where 0⩽di⩽1(i=0,1) are the so-called diattenuation factors , and êQ(κ⃗)=q⃗⊥/|q⃗⊥| with q⃗⊥=q̂−k̂(k̂⋅q̂), where p̂*⋅q̂=0. By using this rule, that reduces to Eq. for d1=0, all the results presented in this Letter may be straightforwardly extended to imperfect polarizers.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited