OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 20 — Oct. 15, 2009
  • pp: 3202–3204

Ultraefficient control of light transmission through photonic potential barrier modulation

Xiaolong Wang, Swapnajit Chakravarty, Boem Suk Lee, Cheyun Lin, and Ray T. Chen  »View Author Affiliations

Optics Letters, Vol. 34, Issue 20, pp. 3202-3204 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical modulation mechanism based on dynamically shifting the photonic potential barrier of a photonic crystal waveguide is presented. The modulation mechanism is modeled by the one-dimensional quantum tunneling effect using the Schrödinger equation. The calculation results show that the modulation efficiency is 200 times higher than that of the conventional Mach–Zehnder modulator. Based on this innovative concept, an engineering design of an ultracompact silicon photonic crystal waveguide modulator with 10 μ m × 5 μ m footprint is presented.

© 2009 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

Original Manuscript: July 22, 2009
Revised Manuscript: September 8, 2009
Manuscript Accepted: September 15, 2009
Published: October 12, 2009

Xiaolong Wang, Swapnajit Chakravarty, Boem Suk Lee, Cheyun Lin, and Ray T. Chen, "Ultraefficient control of light transmission through photonic potential barrier modulation," Opt. Lett. 34, 3202-3204 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, Phys. Rev. Lett. 58, 1059 (1987). [CrossRef]
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987). [CrossRef] [PubMed]
  3. M. Notomi, Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  4. W. Jiang, R. T. Chen, and X. Lu, Phys. Rev. B 71, 245115 (2005). [CrossRef]
  5. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003). [CrossRef] [PubMed]
  6. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005). [CrossRef] [PubMed]
  7. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007). [CrossRef]
  8. B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005). [CrossRef]
  9. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000). [CrossRef]
  10. X. L. Wang and R. T. Chen, U.S. patent pending, 455,791 (application date, June 8, 2009).
  11. M. Razavy, Quantum Theory of Tunneling (World Scientific, 2003). [CrossRef]
  12. L. H. Frandsen, A. V. Lavrineko, J. F. Pedersen, and P. I. Borel, Opt. Express 14, 9444 (2006). [CrossRef] [PubMed]
  13. P. Pottier, M. Gnan, and R. M. D. L. Rue, Opt. Express 15, 6569 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: JPG (51 KB)     
» Media 2: JPG (53 KB)     
» Media 3: JPG (92 KB)     
» Media 4: JPG (116 KB)     
» Media 5: JPG (130 KB)     
» Media 6: JPG (103 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited