OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 20 — Oct. 15, 2009
  • pp: 3217–3219

Analysis of Brillouin frequency shift and acoustic waves in a hollow optical fiber

Yoonseob Jeong, Kwang-Yong Song, Kazuo Hotate, and K. Oh  »View Author Affiliations

Optics Letters, Vol. 34, Issue 20, pp. 3217-3219 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (296 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a new method to manipulate the Brillouin frequency shift in silica optical fiber by introducing a silica hollow optical fiber (HOF) waveguide structure. Propagation characteristics of acoustic waves guided along the HOF were theoretically analyzed, and the corresponding Brillouin frequency shifts were measured by a Brillouin optical-correlation domain-analysis system. We experimentally observed that Brillouin frequency shift v B monotonically increases as a function of the central air-hole radius, which showed good agreement with the simulation results. We confirmed that a precise control of Brillouin frequency shift can be obtained by controlling the waveguide parameters of the HOF.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(290.5830) Scattering : Scattering, Brillouin

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 9, 2009
Revised Manuscript: September 10, 2009
Manuscript Accepted: September 15, 2009
Published: October 13, 2009

Yoonseob Jeong, Kwang-Yong Song, Kazuo Hotate, and K. Oh, "Analysis of Brillouin frequency shift and acoustic waves in a hollow optical fiber," Opt. Lett. 34, 3217-3219 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972). [CrossRef]
  2. K. Shiraki, M. Ohashi, and M. Tateda, J. Lightwave Technol. 14, 50 (1996). [CrossRef]
  3. S. P. Smith, F. Zarinetchi, and S. Ezekiel, Opt. Lett. 16, 393 (1991). [CrossRef] [PubMed]
  4. T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 2, 352 (1990). [CrossRef]
  5. M. F. Ferreira, J. F. Rocha, and J. L. Pinto, Opt. Quantum Electron. 26, 35 (1994). [CrossRef]
  6. L. Thevenaz, Nat. Photonics 2, 474 (2008). [CrossRef]
  7. J. Yu, I.-B. Kwon, and K. Oh, J. Lightwave Technol. 21, 1779 (2003). [CrossRef]
  8. W. Zou, Z. He, and K. Hotate, Opt. Express 16, 10006 (2008). [CrossRef] [PubMed]
  9. K. Oh, S. Choi, Y. Jung, and J. W. Lee, J. Lightwave Technol. 23, 524 (2005). [CrossRef]
  10. Y. Jung, S. B. Lee, J. W. Lee, and K. Oh, Opt. Lett. 30, 84 (2005). [CrossRef] [PubMed]
  11. R. A. Waldron, IEEE Transactions on Mirowave Theory and Techniques MTT-17, 893 (1969). [CrossRef]
  12. A. Gilat and V. Subramaniam, Numerical Methods for Engineers and Scientists (Wiley, 2007).
  13. K. Y. Song, Z. He, and K. Hotate, Opt. Lett. 31, 2526 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited