OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 21 — Nov. 1, 2009
  • pp: 3397–3399

Near-infrared free-carrier absorption in silicon nanocrystals

Rohan D. Kekatpure and Mark L. Brongersma  »View Author Affiliations

Optics Letters, Vol. 34, Issue 21, pp. 3397-3399 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report quantification of the free-carrier absorption (FCA) cross section in silicon nanocrystals embedded in a thin SiO 2 film at 1540 nm using a collinear pump–probe method. To this end, we measured the pump-intensity dependence of both the light transmission through the film and the photoexcited carrier density in the nanocrystals. From these measurements, we extracted a FCA cross section of σ FCA = ( 3.6 ± 1.4 ) × 10 17 cm 2 , consistent with previous results in the visible range and the known λ 2 scaling behavior of this quantity. Given the rapidly rising prevalence of silicon-based active photonic devices, our finding assumes particular significance for Si-nanocrystal-sensitized rare-earth-atom lasers and all optical switches at important telecom wavelengths.

© 2009 Optical Society of America

OCIS Codes
(160.3130) Materials : Integrated optics materials
(160.3380) Materials : Laser materials
(160.5690) Materials : Rare-earth-doped materials
(230.3120) Optical devices : Integrated optics devices
(250.6715) Optoelectronics : Switching
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: May 11, 2009
Revised Manuscript: September 25, 2009
Manuscript Accepted: September 25, 2009
Published: October 29, 2009

Rohan D. Kekatpure and Mark L. Brongersma, "Near-infrared free-carrier absorption in silicon nanocrystals," Opt. Lett. 34, 3397-3399 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Silicon Photonics: The State of the Art, G.T.Reed, ed. (Wiley-Interscience, 2008). [CrossRef]
  2. T. Kitagawa, F. Bilodeau, B. Malo, S. Theriault, J. Albert, D. Jihnson, K. Hill, K. Hattori, and Y. Hibino, Electron. Lett. 30, 1311 (1994). [CrossRef]
  3. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, Phys. Rev. A 74, 051802 (2006). [CrossRef]
  4. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, Appl. Phys. Lett. 71, 1198 (1997). [CrossRef]
  5. W. P. Dumke, Phys. Rev. 127, 1559 (1962). [CrossRef]
  6. D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, Phys. Rev. B 67, 245301 (2003). [CrossRef]
  7. A. Tewary, R. D. Kekatpure, and M. L. Brongersma, Appl. Phys. Lett. 88, 093114 (2006). [CrossRef]
  8. R. D. Kekatpure and M. L. Brongersma, Phys. Rev. A 78, 023829 (2008). [CrossRef]
  9. R. D. Kekatpure and M. L. Brongersma, Nano Lett. 8, 3787 (2008). [CrossRef] [PubMed]
  10. F. Trojánek, K. Neudert, M. Bittner, and P. Malý, Phys. Rev. B 72, 075365 (2005). [CrossRef]
  11. J. A. Rowlette, R. D. Kekatpure, M. A. Panzer, M. L. Brongersma, and K. E. Goodson, Phys. Rev. B 80, 045314 (2009). [CrossRef]
  12. P. G. Kik and A. Polman, J. Appl. Phys. 88, 1992 (2000). [CrossRef]
  13. H. G. Yoo, Y. Fu, D. Riley, J. H. Shin, and P. M. Fauchet, Opt. Express 16, 8623 (2008). [CrossRef] [PubMed]
  14. R. J. Walters, G. I. Bourianoff, and H. A. Atwater, Nature Mater. 4, 143 (2005). [CrossRef]
  15. R. Li, J. R. Schneck, J. Warga, L. D. Ziegler, and L. D. Negro, Appl. Phys. Lett. 93, 091119 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited