OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 21 — Nov. 1, 2009
  • pp: 3418–3420

Complete response characterization of ultrafast linear photonic devices

Tobias Kampfrath, Daryl M. Beggs, Thomas F. Krauss, and L. (Kobus) Kuipers  »View Author Affiliations

Optics Letters, Vol. 34, Issue 21, pp. 3418-3420 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (376 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to fully characterize linear photonic devices that change their properties on ultrashort time scales. When we feed the device with a broadband input pulse and detect the resulting output field for a sufficient number of arrival times of the input, the device response to any other input with smaller bandwidth can be extracted numerically, without the need for additional measurements. Our approach is based on the formalism of linear time-varying systems, and we experimentally demonstrate its feasibility for the example of an ultrafast nanophotonic switch.

© 2009 Optical Society of America

OCIS Codes
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.7080) Ultrafast optics : Ultrafast devices

ToC Category:
Ultrafast Optics

Original Manuscript: July 20, 2009
Revised Manuscript: September 16, 2009
Manuscript Accepted: September 18, 2009
Published: October 29, 2009

Tobias Kampfrath, Daryl M. Beggs, Thomas F. Krauss, and L. (Kobus) Kuipers, "Complete response characterization of ultrafast linear photonic devices," Opt. Lett. 34, 3418-3420 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. F. Preble, Q. Xu, and M. Lipson, Nat. Photonics 1, 293 (2007). [CrossRef]
  2. P. J. Harding, T. G. Euser, Y.-R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, Appl. Phys. Lett. 91, 111103 (2007). [CrossRef]
  3. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, Nat. Photonics 2, 185 (2008). [CrossRef]
  4. M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, Opt. Express 16, 7693 (2008). [CrossRef] [PubMed]
  5. S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, Phys. Rev. B 66, 161102 (2002). [CrossRef]
  6. D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, A. A. Kaplyanskii, D. A. Kurdyukov, and A. B. Pevtsov, Appl. Phys. Lett. 86, 041114 (2005). [CrossRef]
  7. T. Kampfrath, D. M. Beggs, T. P. White, M. Burresi, D. van Oosten, T. F. Krauss, and L. Kuipers, Appl. Phys. Lett. 94, 241119 (2009). [CrossRef]
  8. D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, Opt. Lett. 33, 147 (2008). [CrossRef] [PubMed]
  9. A. Gomez-Iglesias, D. O'Brien, L. O'Faolain, A. Miller, and T. F. Krauss, Appl. Phys. Lett. 90, 261107 (2007). [CrossRef]
  10. C. Dorrer and I. Kang, Opt. Lett. 27, 1315 (2002). [CrossRef]
  11. F. P. Romstad, D. Birkedal, J. Mørk, and J. M. Hvam, IEEE Photon. Technol. Lett. 14, 621 (2002). [CrossRef]
  12. Y. Park, T.-J. Ahn, and J. Azaña, Opt. Express 17, 1734 (2009). [CrossRef] [PubMed]
  13. M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication Systems: Modeling, Methodology and Techniques (Kluwer, 2000).
  14. In this work, the Fourier transform and its inverse are defined by Ff(ω)=∫dtf(t)exp(iωt) and f(t)=∫dωFf(ω)exp(−iωt)/2π, respectively.
  15. R. D. Nelson, D. E. Leaird, and A. M. Weiner, Opt. Express 11, 1763 (2003). [CrossRef] [PubMed]
  16. L. Lepetit, G. Chriaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995). [CrossRef]
  17. R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer, 2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited