OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 34, Iss. 21 — Nov. 1, 2009
  • pp: 3436–3438

Optical polariton modes in a nanoscale semiconductor

Gang Bao and Yuanchang Sun  »View Author Affiliations


Optics Letters, Vol. 34, Issue 21, pp. 3436-3438 (2009)
http://dx.doi.org/10.1364/OL.34.003436


View Full Text Article

Enhanced HTML    Acrobat PDF (131 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Because of the existence of an exciton–biexciton transition inside an optically excited semiconductor, the dielectric constant is modified to be a wave-vector-dependent function. The spatial dispersion relation leads to three propagating modes of polariton, for which two additional boundary conditions will be required. In the vicinity of a resonance, the mathematical study shows that two modes among the three dominate, and the third wave with a large imaginary part can be neglected without affecting the essential physics. Based on the study, a criterion is developed for selecting the appropriate modes. Numerical results are presented for a thin semiconducting film.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.5420) Optics at surfaces : Polaritons

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 5, 2009
Revised Manuscript: October 7, 2009
Manuscript Accepted: October 7, 2009
Published: October 30, 2009

Citation
Gang Bao and Yuanchang Sun, "Optical polariton modes in a nanoscale semiconductor," Opt. Lett. 34, 3436-3438 (2009)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-21-3436


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Frenkel, Phys. Rev. 37, 17 (1931). [CrossRef]
  2. W. Liang, Phys. Educ. 5, 226 (1970). [CrossRef]
  3. C. Klingshirn, Semiconductor Optics (Springer-Verlag, 2007).
  4. M. Reed, Sci. Am. 268, 118 (1993). [CrossRef]
  5. P. Zory, Jr., Quantum Well Lasers (Academic, 1993).
  6. F. Bassania, G. La Roccaa, and M. Artonib, J. Lumin. 110, 174 (2004). [CrossRef]
  7. P. Borri, W. Langbein, U. Woggon, A. Esser, J. Jensen, and J. Hvam, Semicond. Sci. Technol. 18, S351 (2003). [CrossRef]
  8. S. Chesi, M. Artoni, G. La Rocca, F. Bassani, and A. Mysyrowicz, Phys. Status Solidi 1, 497 (2004). [CrossRef]
  9. M. Phillips and H. Wang, Phys. Rev. Lett. 89, 186401 (2002). [CrossRef] [PubMed]
  10. X. Li, Y. Wu, D. Steel, D. Grammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, Science 301, 809 (2003). [CrossRef] [PubMed]
  11. J. Luther, M. Beard, Q. Song, M. Law, R. Ellingson, and A. Nozik, Nano Lett. 7, 1779 (2007). [CrossRef] [PubMed]
  12. A. Nozik, Annu. Rev. Phys. Chem. 52, 193 (2001). [CrossRef] [PubMed]
  13. K. Cho, Optical Response of Nanostructures: Microscopic Nonlocal Theory (Springer-Verlag, 2003).
  14. O. Keller, Phys. Rep. 268, 85 (1996). [CrossRef]
  15. L. Silvrestri, G. Czajkowski, and F. Bassani, Phys. Status Solidi A 175, 383 (1999). [CrossRef]
  16. A. Stahl and I. Balslev, Electrodynamics of the Semiconductor Band Edge, Vol. 110 of Springer Tracts in Modern Physics (Springer-Verlag, 1987). [CrossRef]
  17. Y. Sun, H. Ajiki, and G. Bao, Commun. Comp. Phys. 4, 1051 (2008).
  18. G. Bao and Y. Sun, Contemp. Math. 494, 27 (2009).
  19. I. Abramt, A. Maruani, and S. Schmitt-Rink, J. Phys. C 17, 5163 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited