OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 23 — Dec. 1, 2009
  • pp: 3662–3664

Numerical model for the temporal broadening of optical pulses propagating through weak atmospheric turbulence

Antonio Jurado-Navas, José María Garrido-Balsells, Miguel Castillo-Vázquez, and Antonio Puerta-Notario  »View Author Affiliations

Optics Letters, Vol. 34, Issue 23, pp. 3662-3664 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (130 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In atmospheric optical communications, propagating pulses may be influenced by pulse spreading owing to turbulence, above all in scenarios characterized by sand and/or dust atmosphere. The long-term temporal broadening of a space–time Gaussian pulse propagating along a horizontal path through weak optical turbulence is modeled by the behavior of a Gaussian filter, where its cutoff frequency is related to the physical parameters of the link. Thus, it could be incorporated in a direct way to a numerical simulation model.

© 2009 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(070.4560) Fourier optics and signal processing : Data processing by optical means
(200.1130) Optics in computing : Algebraic optical processing
(290.5930) Scattering : Scintillation
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:

Original Manuscript: September 4, 2009
Manuscript Accepted: October 14, 2009
Published: November 20, 2009

Antonio Jurado-Navas, José María Garrido-Balsells, Miguel Castillo-Vázquez, and Antonio Puerta-Notario, "Numerical model for the temporal broadening of optical pulses propagating through weak atmospheric turbulence," Opt. Lett. 34, 3662-3664 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, IEEE Commun. Mag. 44, 46 (2006). [CrossRef]
  2. Y. Ruike, H. Xiange, H. Yue, and S. Zhongyu, Int. J. Infrared Millim. Waves 28, 181 (2007). [CrossRef]
  3. C. H. Liu and K. C. Yeh, J. Opt. Soc. Am. 67, 1261 (1977). [CrossRef]
  4. R. Ziolkowski and J. Judkins, J. Opt. Soc. Am. A 9, 2021 (1992). [CrossRef]
  5. C. Y. Young, L. C. Andrews, and A. Ishimaru, Appl. Opt. 37, 7655 (1998). [CrossRef]
  6. C. H. Liu and K. C. Yeh, Radio Sci. 14, 925 (1979). [CrossRef]
  7. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE Optical Engineering, 1998).
  8. C. Y. Young, A. Ishimaru, and L. C. Andrews, Appl. Opt. 35, 6522 (1996). [CrossRef] [PubMed]
  9. D. S. Humpherys, The Analysis, Design and Synthesis of Electrical Filters (Prentice-Hall, 1970).
  10. M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication Systems (Plenum, 2000).
  11. A. Jurado-Navas, A. García-Zambrana, and A. Puerta-Notario, Electron. Lett. 43, 178 (2007). [CrossRef]
  12. A. Jurado-Navas and A. Puerta-Notario, J. Opt. Commun. Netw. 1, 452 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited