OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 24 — Dec. 15, 2009
  • pp: 3884–3886

Solid-state ring laser gyro behaving like its helium–neon counterpart at low rotation rates

Sylvain Schwartz, François Gutty, Gilles Feugnet, Éric Loil, and Jean-Paul Pocholle  »View Author Affiliations

Optics Letters, Vol. 34, Issue 24, pp. 3884-3886 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear couplings induced by crystal diffusion and spatial inhomogeneities of the gain have been suppressed over a broad range of angular velocities in a solid-state ring laser gyro by vibrating the gain crystal at 168 kHz and 0.4 μ m along the laser cavity axis. This device behaves in the same way as a typical helium–neon ring laser gyro, with a zone of frequency lock-in (or dead band) resulting from the backscattering of light on the cavity mirrors. Furthermore, it is shown that the level of angular random-walk noise in the presence of mechanical dithering depends only on the quality of the cavity mirrors, as is the case with typical helium–neon ring laser gyros.

© 2009 Optical Society of America

OCIS Codes
(120.5790) Instrumentation, measurement, and metrology : Sagnac effect
(140.3370) Lasers and laser optics : Laser gyroscopes
(140.3560) Lasers and laser optics : Lasers, ring
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 4, 2009
Revised Manuscript: October 7, 2009
Manuscript Accepted: October 20, 2009
Published: December 11, 2009

Sylvain Schwartz, François Gutty, Gilles Feugnet, Éric Loil, and Jean-Paul Pocholle, "Solid-state ring laser gyro behaving like its helium-neon counterpart at low rotation rates," Opt. Lett. 34, 3884-3886 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Macek and D. Davis, Appl. Phys. Lett. 2, 67 (1963). [CrossRef]
  2. F. Aronowitz, in Laser Applications (Academic, 1971), p. 133.
  3. S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006). [CrossRef] [PubMed]
  4. A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, Sov. J. Quantum Electron. 16, 58 (1986). [CrossRef]
  5. H. G. Danielmeyer and E. H. Turner, Appl. Phys. Lett. 17, 519 (1970). [CrossRef]
  6. S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, Phys. Rev. Lett. 100, 183901 (2008). [CrossRef] [PubMed]
  7. S. Sunada, S. Tamura, K. Inagaki, and T. Harayama, Phys. Rev. A 78, 053822 (2008). [CrossRef]
  8. S. Schwartz, G. Feugnet, E. Lariontsev, and J.-P. Pocholle, Phys. Rev. A 76, 023807 (2007). [CrossRef]
  9. F. Aronowitz, in Optical Gyros and their Application, NATO RTO AGARDograph 339 (1999).
  10. J. Killpatrick, IEEE Spectrum 4, 44-55 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited