OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 3 — Feb. 1, 2009
  • pp: 247–249

Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique

Martin Ams, Peter Dekker, Graham D. Marshall, and Michael J. Withford  »View Author Affiliations

Optics Letters, Vol. 34, Issue 3, pp. 247-249 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (231 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A femtosecond-laser-written monolithic waveguide laser (WGL) oscillator based on a distributed-feedback architecture and fabricated in ytterbium-doped phosphate glass is reported. The device lased at 1033 nm with an output power of 102 mW and a bandwidth of less than 2 pm when bidirectionally pumped at 976 nm . The WGL device was stable and operated for 50 h without degradation. This demonstration of a high-performance WGL opens the possibility for creating a variety of narrow-linewidth laser designs in bulk glasses.

© 2009 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(230.1480) Optical devices : Bragg reflectors
(230.7370) Optical devices : Waveguides
(130.2755) Integrated optics : Glass waveguides
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 26, 2008
Revised Manuscript: November 13, 2008
Manuscript Accepted: December 4, 2008
Published: January 22, 2009

Martin Ams, Peter Dekker, Graham D. Marshall, and Michael J. Withford, "Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique," Opt. Lett. 34, 247-249 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. V. Nikonorov and G. T. Petrovskii, Glass Phys. Chem. 25, 16 (1999).
  2. L. Eldada, Rev. Sci. Instrum. 75, 575 (2004). [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996). [CrossRef] [PubMed]
  4. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, Opt. Lett. 30, 2248 (2005). [CrossRef] [PubMed]
  5. J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, Appl. Phys. A 86, 165 (2007). [CrossRef]
  6. R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008). [CrossRef]
  7. K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 84, 311 (2004). [CrossRef]
  8. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, Opt. Express 15, 3190 (2007). [CrossRef] [PubMed]
  9. N. D. Psaila, R. R. Thomson, H. T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, IEEE Photon. Technol. Lett. 20, 126 (2008). [CrossRef]
  10. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, Opt. Lett. 33, 956 (2008). [CrossRef] [PubMed]
  11. M. Ams, G. D. Marshall, and M. J. Withford, Opt. Express 14, 13158 (2006). [CrossRef] [PubMed]
  12. H. B. Zhang, S. M. Eaton, and P. R. Herman, Opt. Lett. 32, 2559 (2007). [CrossRef] [PubMed]
  13. A. D. Yablon and R. T. Bise, IEEE Photon. Technol. Lett. 17, 118 (2005). [CrossRef]
  14. K. Yelen, L. M. B. Hickey, and M. N. Zervas, IEEE J. Quantum Electron. 40, 711 (2004). [CrossRef]
  15. V. J. Mazurczyk and J. L. Zyskind, IEEE Photon. Technol. Lett. 6, 616 (1994). [CrossRef]
  16. P. Dekker and J. M. Dawes, J. Opt. Soc. Am. B 15, 247 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited