OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 4 — Feb. 15, 2009
  • pp: 401–403

Diffractive coupling in gold nanoparticle arrays and the effect of disorder

Baptiste Auguié and William L. Barnes  »View Author Affiliations

Optics Letters, Vol. 34, Issue 4, pp. 401-403 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-dimensional arrays of gold nanoparticles with a periodicity commensurate with the wavelength of resonant excitation of localized plasmons have been shown to exhibit a strong long-range interaction between particles. We investigate experimentally the effect of varying the degree of disorder in the geometrical arrangement from a periodic to a disordered lattice with constant occupancy. We also investigate the effect of disorder arising from variations in particle size for a regular lattice, and the effect this has on the broadening of the spectral line shape is discussed. A coupled dipole model is used to describe the observed spectral features.

© 2009 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(290.2200) Scattering : Extinction
(290.3700) Scattering : Linewidth
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:

Original Manuscript: November 6, 2008
Manuscript Accepted: December 15, 2008
Published: February 4, 2009

Baptiste Auguié and William L. Barnes, "Diffractive coupling in gold nanoparticle arrays and the effect of disorder," Opt. Lett. 34, 401-403 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Kreibig and L. Genzel, Surf. Sci. 156, 678 (1985). [CrossRef]
  2. S. Link and M. El-Sayed, Int. Rev. Phys. Chem. 19, 409 (2000). [CrossRef]
  3. V. A. Markel and A. Sarychev, Phys. Rev. B 75, 085426 (2007). [CrossRef]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, Nature Mater. 2, 229 (2003). [CrossRef]
  5. A. Grigorenko, H. Gleeson, Y. Zhang, N. Roberts, A. Sidorov, and A. Panteleev, Appl. Phys. Lett. 88, 124103 (2006). [CrossRef]
  6. Z. V. Vardeny and A. Nahata, Nat. Photonics 2, 75 (2008). [CrossRef]
  7. A. A. Govyadinov and V. A. Markel, Phys. Rev. B 78, 035403 (2008). [CrossRef]
  8. V. G. Kravets, F. Schedin, and A. N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008). [CrossRef] [PubMed]
  9. B. Auguié and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008). [CrossRef] [PubMed]
  10. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, Appl. Phys. Lett. 93, 181108 (2008). [CrossRef]
  11. D. Nau, A. Schoenhardt, C. Bauer, A. Christ, T. Zentgraf, J. Kuhl, M. W. Klein, and H. Giessen, Phys. Rev. Lett. 98, 133902 (2007). [CrossRef] [PubMed]
  12. A. Baddeley and R. Turner, J. Stat. Software 12, 1 (2005).
  13. D. Strauss, Biometrika 62, 467 (1975). [CrossRef]
  14. H. Kuwata-Gonokami, H. Tamaru, K. Esumi, and K. Miyano, Appl. Phys. Lett. 83, 4625 (2003). [CrossRef]
  15. G. C. Schatz and R. P. Van Duyne, J. Chem. Phys. 103, 869 (1995). [CrossRef]
  16. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited