OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 4 — Feb. 15, 2009
  • pp: 443–445

Metal nanocluster metamaterial fabricated by the colloidal self-assembly

Jin Hyoung Lee, Qi Wu, and Wounjhang Park  »View Author Affiliations

Optics Letters, Vol. 34, Issue 4, pp. 443-445 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (376 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new bottom-up approach for fabricating the optical metamaterial is reported. An array of metal nanoparticle clusters can provide both electric and magnetic activity in the optical frequency region through the excitation of the collective plasmon resonance. A two-dimensional square array of gold nanoparticle clusters (nanoclusters) was fabricated by using the template-directed colloidal self-assembly. The optical measurements showed strong extinction peaks in the near-infrared region owing to the electric resonance supported by the nanoclusters. The peak positions were in excellent agreement with the numerical simulations. The metal nanocluster metamaterial represents a promising new architecture for an optical metamaterial that can be fabricated by a scalable bottom-up fabrication technique.

© 2009 Optical Society of America

OCIS Codes
(290.4020) Scattering : Mie theory
(350.4990) Other areas of optics : Particles
(160.3918) Materials : Metamaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Other Areas of Optics

Original Manuscript: November 3, 2008
Manuscript Accepted: December 12, 2008
Published: February 9, 2009

Jin Hyoung Lee, Qi Wu, and Wounjhang Park, "Metal nanocluster metamaterial fabricated by the colloidal self-assembly," Opt. Lett. 34, 443-445 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005). [CrossRef] [PubMed]
  3. D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006). [CrossRef]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001). [CrossRef] [PubMed]
  5. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Opt. Lett. 30, 3356 (2005). [CrossRef]
  6. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006). [CrossRef] [PubMed]
  7. W. Park and Q. Wu, Solid State Commun. 146, 221 (2008). [CrossRef]
  8. Q. Wu and W. Park, Appl. Phys. Lett. 92, 153114 (2008). [CrossRef]
  9. C. Rockstuhl, F. Lederer, C. Etrich, and T. Pertsch, Phys. Rev. Lett. 99, 017401 (2007). [CrossRef] [PubMed]
  10. Y. Xia, Y. Yin, Y. Lu, and J. McLellan, Adv. Funct. Mater. 13, 907 (2003). [CrossRef]
  11. J. Turkevich, Gold Bull. 18, 86 (1985). [CrossRef]
  12. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  13. G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, J. Phys. D 37, 74 (2004). [CrossRef]
  14. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002). [CrossRef]
  15. M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited