OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 6 — Mar. 15, 2009
  • pp: 752–754

Flat-top pulse generation based on a fiber Bragg grating in transmission

Miguel A. Preciado and Miguel A. Muriel  »View Author Affiliations

Optics Letters, Vol. 34, Issue 6, pp. 752-754 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (241 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and analyze a flat-top pulse generator based on a fiber Bragg grating (FBG) in transmission. As is shown in the examples, a uniform period FBG properly designed can exhibit a spectral response in transmission close to sinc function (in amplitude and phase) in a certain bandwidth, because of the logarithm Hilbert transform relations, which can be used to reshape a Gaussian-like input pulse into a flat-top pulse.

© 2009 Optical Society of America

OCIS Codes
(200.4740) Optics in computing : Optical processing
(230.1150) Optical devices : All-optical devices
(320.5540) Ultrafast optics : Pulse shaping
(320.7080) Ultrafast optics : Ultrafast devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 27, 2008
Revised Manuscript: January 23, 2009
Manuscript Accepted: January 30, 2009
Published: March 6, 2009

Miguel A. Preciado and Miguel A. Muriel, "Flat-top pulse generation based on a fiber Bragg grating in transmission," Opt. Lett. 34, 752-754 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001). [CrossRef]
  2. J. H. Lee, P. C. The, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 203 (2002). [CrossRef]
  3. Y. Park, M. Kulishov, R. Slavík, and J. Azaña, Opt. Express 14, 12670 (2006). [CrossRef] [PubMed]
  4. K. Hinton, J. Lightwave Technol. 16, 2336 (1998). [CrossRef]
  5. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, J. Lightwave Technol. 15, 1303 (1997). [CrossRef]
  6. J. Skaar, J. Opt. Soc. Am. A 18, 557 (2001). [CrossRef]
  7. N. Q. Ngo, Opt. Lett. 32, 3020 (2007). [CrossRef]
  8. M. H. Asghari and J. Azaña, Opt. Express 16, 11459 (2008). [CrossRef] [PubMed]
  9. M. A. Preciado and M. A. Muriel, Opt. Lett. 33, 2458 (2008). [CrossRef] [PubMed]
  10. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, Opt. Commun. 269, 199 (2007). [CrossRef]
  11. R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999). [CrossRef]
  12. J. Capmany, M. A. Muriel, and S. Sales, Opt. Lett. 32, 2312 (2007). [CrossRef] [PubMed]
  13. A. Yariv and P. Yeh, in Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2007).
  14. M. Ibsen and R. Feced, Opt. Lett. 28, 980 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited