OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 6 — Mar. 15, 2009
  • pp: 782–784

Power scaling of Nd : Y V O 4 and Nd : Gd V O 4 disk lasers using synthetic diamond as a heat spreader

P. Millar, A. J. Kemp, and D. Burns  »View Author Affiliations

Optics Letters, Vol. 34, Issue 6, pp. 782-784 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (172 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A newly developed low-birefringence synthetic diamond is shown to be an effective intracavity heat spreader in Nd : Y V O 4 and Nd : Gd V O 4 disk lasers. A cw output power of 25.7 W from only one double pass of the pump is reported. The diamond heat spreader is shown to increase the pump power density at which fracture occurs.

© 2009 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 24, 2008
Revised Manuscript: January 9, 2009
Manuscript Accepted: February 3, 2009
Published: March 10, 2009

P. Millar, A. J. Kemp, and D. Burns, "Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader," Opt. Lett. 34, 782-784 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Giesen and J. Speiser, IEEE J. Sel. Top. Quantum Electron. 13, 598 (2007). [CrossRef]
  2. S. Rivier, X. Mateos, Ò. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, Opt. Lett. 33, 735 (2008). [CrossRef] [PubMed]
  3. N. Pavel, C. Kränkel, R. Peters, K. Petermann, and G. Huber, Appl. Phys. B 91, 415 (2008). [CrossRef]
  4. R. Hua, Y. Liao, K. Franjic, B. Bruner, and R. J. D. Miller, in Advanced Solid State Lasers (Optical Society of America, 2002), paper TuC1.
  5. J. M. Hopkins, S. Calvez, A. J. Kemp, J. E. Hastie, S. A. Smith, A. J. Maclean, D. Burns, and M. D. Dawson, Phys. Status Solidi C 3, 380 (2006). [CrossRef]
  6. P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, IEEE J. Quantum Electron. 44, 709 (2008). [CrossRef]
  7. H. P. Chou, Y. L. Wang, and V. Hasson, Proc. SPIE , 5448, 550 (2004). [CrossRef]
  8. H. P. Godfried, G. A. Scarsbrook, D. J. Twitchen, E. P. Houwman, W. G. M. Nelissen, A. J. Whitehead, C. E. Hall, and P. M. Martineau, “Optical quality diamond material,” publication no. WO/2004/046427 (Patent Cooperation Treaty, June 3, 2004).
  9. Z. L. Liau, Appl. Phys. Lett. 77, 651 (2000). [CrossRef]
  10. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, Appl. Phys. B 70, 487 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited